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On some sufficient conditions of supersolvability
of finite groups

By YANMING WANG (Guangzhou) and YANGMING LI (Guangzhou)

Abstract. A subgroup H is said to be c-supplemented in a finite group G
if there exists a subgroup K of G such that HK = G and H ∩ K is contained
in CoreG(H). We determine the structure of a finite group G with the minimal
subgroups of the generalized Fitting subgroup of some normal subgroups of G
c-supplemented in G, generalizing some known results.

1. Introduction

All groups considered in this paper will be finite. We use M < ·G to
indicate that M is a maximal subgroup of G.

We say, following [5], a subgroup H of a group G is c-supplemented
(in G) if there exists a subgroup K of G such that HK = G and H ∩K ≤
HG = CoreG(H), and K is called a c-supplement of H in G.

Recall that a subgroup H of G is said to be c-normal (in G) if there
exists a normal subgroup N of G such that HN = G and H∩N ≤ HG ([4]).
A subgroup H is said to be complemented in G if there exists a subgroup
K of G such that G = HK and H ∩ K = 1. One can easily see that c-
supplementation is a generalization of c-normality and complementation,
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that is, to remove the normal supplementation assumption in c-normality
and to remove the trivial intersection assumption in complementation.
There are examples to show that c-supplementation does not imply c-
normality or complementation ([5]).

Let F be a class of groups. We call F a formation provided that (i)
if G ∈ F and H / G, then G/H ∈ F , and (ii) if G/M and G/N are in F ,
then G/(M ∩N) is in F for normal subgroups M, N of G. A formation F
is said to be saturated if G/Φ(G) ∈ F implies that G ∈ F (see [1, Ch VI]).
Throughout this paper U will denote the class of all supersolvable groups.
Clearly, U is a saturated formation.

Let P be the set of prime numbers. A formation function is a function
f defined on P such that f(p) is a, possibly empty, formation. A chief
factor H/K of a group G is f -central in G if G/CG(H/K) ∈ f(p) for all
primes p dividing |H/K|. F is local if and only if there exists a formation
function f such that F is the class of all groups with f -central factors.
We write F = LF (f) and say that f is a local definition of F . The
Theorem of Gaschutz–Lubeseder–Schmid [1, IV 4.6] states that the non-
empty saturated formations are the local ones. A chief factor H/K of a
group G is said to be F-central in G, F a saturated formation and f an
integrated and local definition of F , if H/K is f -central in G; H/K is
F-eccentric otherwise. A maximal subgroup M of G is called F-normal
in G if G/MG ∈ F and F-abnormal otherwise. M is said to be F-critical
in G if Soc(G/MG) is the unique minimal normal subgroup of G/MG, M is
F-abnormal in G, and G = MF ′(G), where F ′(G)/Φ(G) = Soc(G/Φ(G)).
By [13, Theorem 3.5], if G does not belong to F , then G has an F-critical
maximal subgroup.

For a formation F , each group G has a smallest normal subgroup N

such that G/N is in F . This uniquely determined normal subgroup of G

is called the F-residual subgroup of G and is denoted by GF .

Definition. Let p be a prime and G be a group. We define:
Pp(G) = {x | x ∈ G, |x| = p},
P(G) =

⋃

p∈π(G)

Pp(G),

Let x be an element of G. We say that x is c-supplemented in G if 〈x〉
is c-supplemented in G.
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2. Preliminary results

In this section, we give some results that are needed in this paper.

Lemma 2.1 (5, Lemma 2.1). Let G be a group. Then

(1) If H is c-supplemented in G, H ≤ M ≤ G, then H is c-supplemented

in M ;

(2) Let N / G and N ≤ H. Then H is C-supplemented in G if and only

if H/N is c-supplemented in G/N ;

(3) Let π be a set of primes. Let N be a normal π′-subgroup and let H

be a π-subgroup of G. If H is c-supplemented in G, then HN/N is

c-supplemented in G/N .

(4) Let H ≤ G and L ≤ Φ(H). If L is c-supplemented in G, then L / G

and L ≤ Φ(G).

Let G be a group. The generalized Fitting subgroup F ∗(G) of G is
the unique maximal normal quasinilpotent subgroup of G. F ∗(G) is an
important subgroup of G and it is a natural generalization of F (G). The
definition and important properties can be found in [6, X 13]. We would
like to give the following basic facts which we will use in our proof.

Lemma 2.2. Let G be a group and M a subgroup of G.

(1) If M is normal in G, then F ∗(M) ≤ F ∗(G);

(2) F ∗(G) 6=1 if G 6=1; in fact, F ∗(G)/F (G)= soc(F (G)CG(F (G))/F (G));

(3) F ∗(F ∗(G)) = F ∗(G) ≥ F (G); if F ∗(G) is soluble, then F ∗(G) = F (G).

(4) CG(F ∗(G)) ≤ F (G);

(5) Suppose K is a subgroup of G contained in Z(G), then F ∗(G/K) =
F ∗(G)/K.

Proof. (1)–(4) can be found in [6, X 13].

(5) Denote F ∗(G/K) = L/K. Consider a chief series of G of the form

G = G0 > · · · > Gm−1 > Gm = K > Gm+1 > · · · > Gn = 1.

By the definition of the generalized Fitting subgroup, ∀x ∈ L, x = xK

induces an inner automorphism on the chief factor Gi−1/Gi = (Gi−1/K)/
(Gi/K) of G/K, for i = 1, 2, . . . , m, thus x induces an inner automorphism
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on the chief factor Gi−1/Gi of G, for i = 1, 2, . . . , m. Since K ≤ Z(G), the
automorphism induced by x on the chief factor Gi−1/Gi of G is identity,
for i = m + 1, . . . , n, so x induces an inner automorphism on the chief
factor Gi−1/Gi of G, for i = 1, 2, . . . , n. Hence by [6, X, Lemma 13.1], x

induces an inner automorphism on any chief factor of G. Thus x ∈ F ∗(G),
i.e., L ≤ F ∗(G). Obviously F ∗(G) ≤ L, hence F ∗(G/K) = F ∗(G)/K. ¤

Lemma 2.3. Let G be a group. Assume that N is a normal subgroup

of G (N 6= 1) and N ∩Φ(G) = 1. Then the Fitting subgroup F (N) of N is

the direct product of minimal normal subgroups of G which are contained

in F (N). In particular, if Φ(G) = 1, then F (G) the direct product of

minimal normal subgroups of G which are contained in F (G).

Proof. Refer to [1] Chapter 3. ¤

Next we give two properties of Fitting subgroup.

Lemma 2.4. Suppose N , L are two normal subgroups of a group G.

(1) If L is nilpotent, then F (NL) = F (N)L.

(2) If L ≤ Φ(G), then F (NL/L) = F (N)L/L.

Proof. (1) By the hypothesis, it is easy to see that F (N)L is a nilpo-
tent normal subgroup of NL, so F (N)L ≤ F (NL). On the other hand,
F (NL) = F (NL)∩NL = (F (NL)∩N)L, then F (NL)∩N is a nilpotent
normal subgroup of N , thus is contained in F (N). So F (NL) ≤ F (N)L,
the equality holds.

(2) Denote F (NL/L)=K/L. Since F (NL)/L is nilpotent, F (NL)/L≤
K/L. On the other hand, K/L is nilpotent, L ≤ Φ(G), [1, p. 220, Satz 3.5]
implies that K is nilpotent, thus K ≤ F (NL), so F (NL/L) = F (NL)/L =
F (N)L/L by (1). ¤

Lemma 2.5. Let G be a group with a normal subgroup N such that

G/N is supersolvable. Suppose that Φ(G) = 1 and F ∗(G) = F (G). If for

any maximal subgroup M of G, either F (N) ≤ M or F (N)∩M < ·F (N),
then G is supersolvable.

Proof. If N =1, obviously the theorem holds. So assume that N 6=1,
then Lemma 2.2 implies that F ∗(N) ≤ F ∗(G) = F (G), so F ∗(N) =
F (N) 6= 1. By Lemma 2.3 and the hypothesis, we have F (N) = L1×L2×
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· · · ×Ls, where Li is a minimal normal subgroup of G contained in F (N).
Again by Lemma 2.3 we can write that F (G) = F (N)×H1×H2×· · ·×Hr,
where Hi is a minimal normal subgroup of G contained in F (G) but not
contained in F (N) and F (G) is abelian. ∀i, Li � Φ(G) as Φ(G) = 1, so
there exists a maximal subgroup Mi of G such that Li � Mi. It follows
that G = LiMi. Since Li is abelian, Li∩Mi/LiMi = G. The minimality of
Li implies that Li∩Mi = 1. Since F (N) = F (N)∩LiMi = Li(F (N)∩Mi),
F (N) ∩Mi < ·F (N) by hypotheses, then the nilpotence of F (N) implies
that [F (N) : F (N) ∩Mi] is a prime.

Since Li ≤ F (N), G = MiF (N), thus |Li| = [G : Mi] = [F (N) :
F (N) ∩Mi] is a prime. So G/CG(Li) is abelian, then G′ ≤ CG(Li), ∀i.

Since HjN/N is the minimal normal subgroup of the supersolvable
group G/N , we have that Hj

∼=HjN/N has also prime order. So G/CG(Hj)
is abelian, then G′ ≤ CG(Hj). Therefore

G′ ≤



r⋂

j=1

CG(Hj)


 ∩




s⋂

i=1

CG(Li)


 = CG(F (G)).

By Lemma 2.2(4), we have CG(F ∗(G)) ≤ F (G), thus G′ ≤ F (G) by hy-
potheses.

For any maximal subgroup M of G, by hypotheses we have either
F (N) ≤ M or F (N) ∩ M < ·F (N). If F (N) ∩ M < ·F (N), then G =
MF (N), thus [G : M ] = [F (N) : F (N) ∩ M ]. The nilpotence of F (N)
implies [F (N) : F (N) ∩ M ] is a prime, so [G : M ] is also a prime. If
F (N) ≤ M but F (G) � M , then there exists a minimal normal subgroup
Hi such that Hi � M , so G = HiM . Thus [G : M ] = |Hi| is a prime.
If F (G) ≤ M , then M ≥ G′, thus M / G and G/M has no trivial proper
subgroup, so |G : M | is also a prime. Therefore G is supersolvable by the
well-known Huppert Theorem. ¤

Lemma 2.6. Let G be a finite group. Suppose G = PM , where P

is a normal p-subgroup of G and M is a maximal subgroup of G. Then

P ∩M / G.

Proof. First we have NG(P ∩M) ≥ M by the normality of P . Ob-
viously P � M , so P ∩M < P . Since P is a p-group, P has a subgroup
P1 such that P ∩ M a proper normal subgroup of P1, so NG(P ∩ M) ≥
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〈M, P1〉 = G as M is a maximal subgroup of G and P1 � M . Thus
P ∩M / G. ¤

The following Theorem is a generalization of [14, Theorem 3.7].

Theorem 2.7. Let G be a group with a normal subgroup N such

that G/N is supersolvable. If every element of prime order of N is c-

supplemented in G and N is quaternion-free, then G is supersolvable.

Proof. Assume that the result is false and let G be a counterexample
of minimal order.

(1) Every proper subgroups of G is supersolvable. Furthermore

(a) There exists a normal Sylow p-subgroup of G such that G = PR

and P/Φ(P ) is a minimal normal subgroup of G/Φ(P );

(b) If p > 2, then the exponent of P is p. When p = 2, the exponent
of P is 2 or 4, especially in this case, every proper subgroup of G

is nilpotent and Φ(P ) ≤ Z(G).

Denote K = GU . Let M be a maximal subgroup of G. It is clear that
M/M ∩K is supersolvable and hence MU ≤ M ∩K. By Lemma 2.1,
every element of P(MU ) is c-supplemented in M , obviously, MU is
quaternion-free, so that M satisfies the hypotheses of G. The minimal
choice of G yields that M is supersolvable. This holds for every maxi-
mal subgroup M of G. Hence we have that G is not supersolvable but
every proper subgroup of G is supersolvable. [1, VI, §, Ex. 1] implies
(1)(a) and (1)(b).

(2) K = P . Since G/P is supersolvable, we have that K ≤ P . Then
KΦ(P )/Φ(P ) is a normal subgroup of G/Φ(P ) contained in P/Φ(P ).
Since P/Φ(P ) is a minimal normal subgroup of G/Φ(P ), we have
that either KΦ(P ) = P or K ≤ Φ(P ). If K < Φ(P ), then K is
actually contained in Φ(G) and G/Φ(G) is supersolvable. Hence G is
supersolvable, a contradiction, and so we have that P = K.

(3) Φ(P ) 6= 1. Otherwise P is elementary abelian and hence, by (1), every
element of P lies in P(P ). Our hypotheses claims that every element
of P is c-supplemented in G. Let 1 6= x ∈ P . Then there exists K ≤ G

such that 〈x > K = G and 〈x〉 ∩K ≤ 〈x〉G. Then P = 〈x〉(P ∩K).
Since P is abelian, we have that P ∩K / G. By (1), P is a minimal
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normal subgroup of G when Φ(P ) = 1. Therefore P ∩ K = 1 or
P ≤ M . In both case, we have that 〈x〉 = P and therefore G is
supersolvable, a contradiction.

(4) p = 2. Assume that p > 2. Then by (1)(b) every element of P is c-
supplemented in G. Moreover, By Lemma 2.1(4), Φ(P ) is contained in
Φ(G) and Φ(P )/G. Next we see that the hypotheses of Theorem holds
in G/Φ(P ). Let x ∈ P −Φ(P ). By hypotheses there exists a subgroup
M of G such that G = 〈x〉M and 〈x〉 ∩ M ≤ 〈x〉G. If 〈x〉 = 〈x〉G,
then (1) implies that P = 〈x〉Φ(P ) = 〈x〉. Then G is supersolvable, a
contradiction. And so we have that 〈x〉 ∩M = 1. Hence M is a max-
imal subgroup of G because o(x) = p. This implies that G/Φ(P ) =
〈x〉Φ(P )/Φ(P ) ·M/Φ(P ) and (〈x〉Φ(P )/Φ(P )) ∩ (M/Φ(P )) = 1 and
〈x〉Φ(P )/Φ(P ) is c-supplemented in G/Φ(P ). Since (G/Φ(P ))U ≤
KΦ(P )/Φ(P ), we have that (G/Φ(P ))U is quaternion-free. The min-
imal choice of G (notice that Φ(P ) 6= 1 by (3)) implies that G/Φ(P )
is supersolvable. Since Φ(P ) ≤ Φ(G), we have that G/Φ(G) is super-
solvable and so is G, a contradiction.

(5) Final contradiction.

If exp(P )= 2, then P is elementary abelian, contrary to (3), so exp(P )= 4.
Thus the order of every element of P − Φ(P ) is 4. Pick a, b ∈ P − Φ(P )
such that the order of c = [a, b] is 2. Denote R = 〈a, b〉/〈a2b2, ca2〉, then
a2 = b2 = [a, b] = c 6= 1, o(a) = o(b) = 4, o(c) = 2. So R is quaternion and
a section of P , it is contrary to the hypothesis that K is quaternion-free.
These complete our proof. ¤

Lemma 2.8. Suppose N is a normal subgroup of a group G. If every

element of P(F (N)) is c-supplemented in G and F (N) is quaternion-free,

then for any maximal subgroup M of G, there holds either F (N) ≤ M or

F (N) ∩M < ·F (N).

Proof. For any maximal subgroup M of G, we first indicate that
as in the proof of Lemma 2.3 when F (N) � M , F (N) ∩ M < ·F (N) is
equivalent to [G : M ] is a prime.

Suppose that F (N) � M , then there exists a prime p such that
Op(N) � M , therefore G = Op(N)M . We go through our discussion
with two cases.
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(i) p is an odd prime.
Assume that there exists an element of order p of Op(N), x1 say,

such that x1 is not normal in G. Since x1 is c-supplemented in G by the
hypotheses, there exists a subgroup of G, M1 say, such that G = 〈x1〉M1

and 〈x1〉∩M1 = 1. Then we have that Op(N) = 〈x1〉(Op(N)∩M1), where
Op(N) ∩M1 is normal in G by Lemma 2.6, so we can write

G = 〈x1〉[(Op(N) ∩M1)M ],

where [(Op(N) ∩M1)M is a subgroup of G containing the maximal sub-
group M . If (Op(N) ∩ M1)M = M , then G = 〈x1〉M , so [G : M ] is a
prime. Thus the lemma holds. So we assume (Op(N) ∩M1)M = G, de-
note P1 = Op(N) ∩M1, thus G = P1M , P1 is normal in G by Lemma 2.6
and x1 /∈ P1.

If there exists an element of order p of P1, x2 say, such that x2 is not
normal in G, then there exists a subgroup of G, M2 say, such that G =
〈x2〉M2 and 〈x2〉∩M2 = 1 as x2 is c-supplemented in G by the hypotheses.
Then P1 = 〈x2〉(P1 ∩ M2), P2 ∩ M2 is normal in G by Lemma 2.6, so
we can write G = 〈x2〉[(P1 ∩ M2)M ], where [(P1 ∩ M2)M is a subgroup
of G containing the maximal subgroup M . If (P1 ∩ M2)M = M , then
G = 〈x2〉M . It follows that [G : M ] is a prime. Thus the lemma holds. So
assume (P1 ∩M2)M = G, denote P2 = P1 ∩M2, thus G = P2M , P2 is a
normal subgroup of G contained in Op(N) by Lemma 2.6 and x1, x2 /∈ P2.

Repeating this method, at end we have that either [G : M ] is a prime
or there exists a normal p-subgroup of G contained in Op(N), P say, such
that G = PM and every element of order p of P is normal in G. In
particular, P is a PN-group ([11]).

If P has an element x of order p such that x /∈ M , then G = 〈x〉M as
M is a maximal subgroup of G and x is normal in G. Thus [G : M ] is a
prime, the lemma holds. So we can assume that Ω1(P ) ≤ M . Consider the
factor group G/Ω1(P ) = P/Ω1(P )·M/Ω1(P ). ∀xΩ1(P ) ∈ Ω1(P/Ω1(P )) =
Ω2(P )/Ω1(P ), then xp ∈ Ω1(P ), thus 〈xp〉 / G by the properties of P . So
∀g ∈ G, there exists an integer i such that (xp)g = (xp)i = (xi)p =
(xg)p. Since xg, xi lie in Ω2(P ) which is a PN-group with exponent of
p2, now [11, Th 1(iii)] implies that (xgx−i)p = 1, so xgx−i ∈ Ω1(P ),
therefore 〈xΩ1(P )〉/G/Ω1(P ). If 〈xΩ1(P )〉 �M/Ω1(P ), then G/Ω1(P ) =
〈xΩ1(P )〉M/Ω1(P ), it follows that [G : M ] = [G/Ω1(P ) : M/Ω1(P )] is
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a prime, the lemma holds. Thus we can assume that Ω1(P/Ω1(P )) ≤
M/Ω1(P ). This leads that Ω2(P ) ≤ M .

Again consider the factor group G/Ω2(P ) = P/Ω2(P ) · M/Ω2(P ).
Using the same method as in above, we get that either [G : M ] is a prime
or Ω3(P ) ≤ M , . . . , repeating the method above, at end we have that
[G : M ] is a prime as P is finite. So the lemma holds in this case.

(ii) p = 2.
Suppose that M2 is a Sylow 2-subgroup of M , then O2(N)M2 is a

Sylow 2-subgroup of G as G = O2(N)M . Suppose that H is a maximal
subgroup of O2(N)M2 containing M2, then H = H ∩ (O2(N)M2) = (H ∩
O2(N))M2.

∀q 6= 2, ∀Mq ∈ Sq(M), since O2(N)Mq/O2(N) is supersolvable, every
element of P(O2(N)) is c-supplemented in G, thus is c-supplemented in
O2(N)Mq. Since O2(N) ⊆ F (N), O2(N) is quaternion-free by hypotheses,
now Lemma 2.7 implies that O2(N)Mq is supersolvable, thus O2(N)Mq

= O2(N)×Mq. So O2(M) ≤ CG(O2(N)), therefore (H ∩O2(N))M2′ is a
group, so is (H ∩O2(N))M .

Since M2 ∩O2(N) ≤ M ∩ (H ∩O2(N)) ≤ M ∩O2(N) ≤ O2(N)∩M2,
we have that M ∩ O2(N) = M2 ∩ O2(N). Thus (H ∩ O2(N)) ∩ M =
H ∩ (O2(N) ∩ M) = H ∩ (O2(N) ∩ M2) = O2(N) ∩ M2 = O2(N) ∩ M .
Therefore

|(H ∩O2(N))M | = |H ∩O2(G)| · |M |
|(H ∩O2(N)) ∩M | <

|O2(N)| · |M |
|M ∩O2(N)| = |G|,

so (H ∩ O2(N))M < G, this implies (H ∩ O2(N))M = M as M is a
maximal subgroup of G, so H ∩ O2(N) ≤ M , H ∩ O2(N) ≤ M ∩ O2(N).
This time,

[G : M ] =
|O2(N)|

|O2(N) ∩M | ≤
|O2(N)|

|O2(N) ∩H| = |HO2(N)/H| ≤ 2,

as H is a maximal subgroup of Sylow 2-subgroup of G. Therefore
[G : M ] = 2 is a prime.

These complete the proof of the lemma. ¤
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3. Main results

Theorem 3.1. Suppose G is a solvable group with a normal subgroup

N such that G/N is supersolvable. If every element of P(F (N)) is c-

supplemented in G and F (N) is quaternion-free, then G is supersolvable.

Proof. Since G is solvable, F ∗(G)=F (G) by Lemma 2.2. If Φ(G)=1,
then By Lemma 2.5 and Lemma 2.8, G is supersolvable. Assume that
Φ(G) 6= 1. We consider the factor group G = G/Φ(G). Since Φ(G) = 1,
F ∗(G) = F (G) as G is solvable. For any maximal subgroup M/Φ(G)
of G, obviously M is also a maximal subgroup of G, by Lemma 2.8 we
have either M ≥ F (N) or M ∩ F (N) is a maximal subgroup of F (N).
If F (N) ≤ M , then F (N) = F (NΦ(G)/Φ(G)) = F (NΦ(G))/Φ(G) =
F (N)Φ(G)/Φ(G) ≤ M/Φ(G) by Lemma 2.4. If F (N)∩M < ·F (N), then
[F (N) : F (N) ∩M ] is a prime. Since [F (N) : F (N) ∩M ] = [F (N)Φ(G) :
F (N)Φ(G) ∩M ] = [F (N)Φ(G) : (F (N) ∩M)Φ(G)] = [F (N) : F (N) ∩M ]
is a prime, F (N) ∩ M is a maximal subgroup of F (N). Therefore G

satisfies the hypotheses of Lemma 2.5, thus G is supersolvable, so G is
supersolvable. ¤

We want to delete the hypotheses of solvability of G in Theorem 3.1,
but we should replace the Fitting subgroup F (N) with the generalized
Fitting subgroup F ∗(N).

Theorem 3.2. Suppose G is a group with a normal subgroup N such

that G/N is supersolvable. F ∗(N) is the generalized Fitting subgroup

of N . If every element of prime order of F ∗(N) is c-supplemented in G

and F ∗(N) is quaternion-free, then G is supersolvable.

Proof. Assume that the theorem is false and let G be a counterex-
ample of minimal order. Then we have:

(1) Every proper normal subgroup of G is supersolvable.
If H is a proper normal subgroup of G, then we have that H/H ∩N ∼=

HN/N , thus H/H ∩ N is supersolvable. Since F ∗(H ∩ N) ≤ F ∗(N) by
Lemma 2.2, we have that every element of P∗(F (H∩N)) is c-supplemented
in G, thus is c-supplemented in H by Lemma 2.1. So H satisfies the
hypotheses of the theorem. The minimal choice of G implies that H is
supersolvable.
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Since F (N) ≤ F ∗(N), Lemma 2.8 and Theorem 3.1 imply that:
(2) ∀M < ·G, there holds either F (N) ≤ M or F (N) ∩M < ·F (N).

Furthermore, G is not solvable.
(3) G = G′ = Oq(G) = N , ∀q ∈ π(G).
If G′ < G, then G′ is supersolvable by (1). Since G/G′ is abelian, we

have that G is solvable, contrary to (2).
If Oq(G) < G, then Oq(G) is supersolvable by (1), thus G is solvable

as G/Oq(G) is a q-group, contrary to (2).
Again If N < G, then N is supersolvable by (1). Since G/N is super-

solvable, we have that G is solvable, contrary to (2) too.
(4) F ∗(G) = F ∗(N) = F (G) = F (N) < G.
If F ∗(G) = G, then every element of prime order or order 4 of G

is c-supplemented in G. Lemma 2.7 implies that G is supersolvable, a
contradiction. So F ∗(G) < G, F ∗(G) is supersolvable by (1). In particular,
F ∗(G)= F ∗(F ∗(G))= F (F ∗(G))≤F (G). So we have that F ∗(G)= F (G).

(5) Φ(G) = 1.
Assume that Φ(G) 6= 1. Suppose Q is any Sylow q-subgroup of Φ(G),

for every element x of P∗(Q), x is c-supplemented in G by hypotheses,
thus there exists a subgroup L of G such that G = 〈x〉L and 〈x〉 ∩ L ≤
〈x〉G. Since x ∈ Φ(G), we have that G = L and 〈x〉 is normal in G.
Thus G/CG(〈x〉) is abelian, this implies that G = G′ ≤ CG(〈x〉), i.e., G

centralizes every element of P∗(Q). By Huppert’s result ([1, Satz IV
5.12]), we get every q′-element of G centralizes Q. Thus G/CG(Q) is a q-
group. Then G = Oq(G) ≤ CG(Q), so Q ≤ Z(G), therefore Φ(G) ≤ Z(G).

Consider the factor group G = G/Φ(G). Since Φ(G) = 1, and by
Lemma 2(5), F ∗(G) = F ∗(G)/Φ(G) = F (G)/Φ(G) = F (G/Φ(G)) =
F (G). For any maximal subgroup M/Φ(G) of G, obviously M is also a
maximal subgroup of G, so it holds that F (N) ≤ M or F (N)∩M < ·F (N)
by (2). If F (N)≤M , then F (N)=F (NΦ(G)/Φ(G))=F (NΦ(G))/Φ(G)=
F (N)Φ(G)/Φ(G) ≤ M/Φ(G). If F (N) ∩ M < ·F (N), then [F (N) :
F (N) ∩ M ] is a prime. Since [F (N) : F (N) ∩ M ] = [F (N)Φ(G) :
F (N)Φ(G) ∩M ] = [F (N)Φ(G) : (F (N) ∩M)Φ(G)] = [F (N) : F (N) ∩M ]
is a prime, F (N) ∩ M is a maximal subgroup of F (N). We have ei-
ther M/Φ(G) ≥ F (G)/Φ(G) = F (G/Φ(G)) or M/Φ(G) ∩ F (G/Φ(G)) =
M ∩F (G)/Φ(G) is a maximal subgroup of F (G/Φ(G)). So G satisfies the
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hypotheses of Lemma 2.5, thus G is supersolvable, therefore G is super-
solvable, a contradiction.

(6) The final contradiction.
By (1), (2), (4) and (5), G satisfies the hypotheses of Lemma 2.5, G is

supersolvable. The final contradiction.
These complete the proof of our theorem. ¤

Corollary 3.3. Let G be a group. If every element of prime order

of F ∗(G) is c-supplemented in G and F ∗(G) is quaternion-free, then G is

supersolvable.

4. Generalization to formations

The following is a special case of [12, Theorem 2]:

Lemma 4.1. Let F be a saturated formation containing U . Assume

G is a group with a normal subgroup N of prime order such that G/N ∈ F ,

then G ∈ F .

First we generalize Theorem 2.7 with formation, it is also a general-
ization of [14, Theorem 3.7] with c-supplementment.

Theorem 4.2. Let F be a saturated formation containing U . Assume

G is a group with a normal subgroup N such that G/N ∈ F . If every

element of P(N) is c-supplemented in G and N is quaternion-free, then G

belongs to F .

Proof. Without losing generality we can assume N = GF .
Suppose that the result is false and let G be a counterexample of

minimal order. Then G /∈ F and GF 6= 1. Suppose that GF is not 2-
nilpotent. Then GF has a subgroup K such that K is not 2-nilpotent
but every proper subgroup of K is 2-nilpotent. Then by [1, IV satz 5.4],
K = K2Kq where K2 is a normal Sylow 2-subgroup and Kq is a non-normal
cyclic Sylow q-subgroup for some odd prime q. Let H be the saturated
formation of 2-nilpotent groups. Then KH is contained in K2 and every
chief factor of K below KH is H-eccentric by [14, Lemma 3.6]. Let E be
a minimal normal subgroup of K contained in Z(KH). If EKq < K, then
E is central in K and so H-central, a contradiction. Hence KH = K2 is a
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minimal normal subgroup of K. Pick an element x of order 2 in K2, then
x is c-supplemented in G by hypotheses, so there exists a subgroup H of
G such that G = 〈x〉H and 〈x〉 ∩H ≤ 〈x〉G. If 〈x〉G = 〈x〉, then obviously
K2 = 〈x〉. If 〈x〉G = 1, then [G : H] = 2, so H is normal in G, so K2∩H is
normal in K. Thus K2∩H =1 or K2 by the minimality of K2. If K2∩H =1,
then K2 = K2 ∩G = K2 ∩ (〈x〉H) = 〈x〉(K2 ∩H) = 〈x〉. If K2 ∩H = K2,
then K2 ≤ H, so 〈x〉 ∩H = 〈x〉 = 〈x〉G, a contradiction. So we have that
K2 is a cyclic group of order 2. Then [K : Kq] = 2, so Kq is normal in K.
Thus K is 2-nilpotent, a contradiction. Consequently GF is 2-nilpotent.
In particular, GF is solvable. Let M be a maximal subgroup of G such that
G = MGF and G/MG /∈ F . Then G = MF (G). By [12, Proposition 1],
GF is a p-group for some prime p. By [15, Theorem 4.2], p = 2 and
(GF )′ = Z(GF ) = Φ(GF ). Moreover GF/Φ(GF ) by [12, Proposition 1].
If exp(GF ) = 2, then every element of GF is c-supplemented in G by
hypotheses, now [15, Theorem 4.2] implies that G ∈ F , a contradiction.
So exp(GF ) = 4. Then the order of every element of GF − Φ(GF ) is 4.
Pick a, b ∈ GF −Φ(GF ) such that the order of c = [a, b] is 2. Denote R =
〈a, b〉/〈a2b2, ca2〉, then a2 = b2 = [a, b] = c 6= 1, o(a) = o(b) = 4, o(c) = 2.
So R is quaternion and a section of GF , it is contrary to the hypothesis
that GF is quaternion-free. These complete our proof. ¤

For purpose of giving generalizations of Theorem 3.1 and Theorem 3.2
in word of formations, we give a lemma which is a generalization of
Lemma 2.5.

Lemma 4.3. Let F be a saturated formation containing U . Assume

G is a group with a solvable normal subgroup such G/N ∈ F . If for any

maximal subgroup M of G, either F (N) ≤ M or F (N)∩M < ·F (N), then

G ∈ F .

Proof. We prove the lemma by induction on |G|.
Case 1. N ∩ Φ(G) 6= 1.

Denote N1 = N ∩ Φ(G) and G = G/N1. Then F (N/N1) = F (N)/N1

by Lemma 2.4. Since (G/N1)/(N/N1)∼=G/N , we have that (G/N1)/(N/N1)
lies in F and N/N1 is solvable. Suppose that M/N1 is an arbitrary maximal
subgroup of G/N1, then M < ·G, so it holds either F (N) ≤ M or F (N)∩
M < ·F (N) by hypotheses. If F (N) ≤ M , then F (N) = F (N/N1) =
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F (N)/N1 ≤ M/N1. If F (N) ∩M < ·F (N), then [F (N) : F (N) ∩M ] is a
prime. Since [F (N) : F (N)∩M ] = [F (N) : F (N)∩M ] is a prime, we have
that F (N)∩M is a maximal subgroup of F (N). Therefore G satisfies the
hypotheses of the Theorem, thus G ∈ F by induction, so G ∈ F as F is
saturated.

Case 2. N ∩ Φ(G) = 1.

By Lemma 2.3, we have we have F (N) = L1 × L2 × · · · × Ls, where
Li is a minimal normal subgroup of G contained in F (N). ∀i, Li � Φ(G)
as N ∩ Φ(G) = 1, so there exists a maximal subgroup Mi of G such that
Li � Mi. It follows that G = LiMi. Since Li is abelian, we have that
Li ∩ Mi / LiMi = G. The minimality of Li implies that Li ∩ Mi = 1.
Since F (N) = F (N) ∩ LiMi = Li(F (N) ∩ Mi), F (N) ∩ Mi < ·F (N) by
hypotheses, the nilpotence of F (N) implies that [F (N) : F (N) ∩Mi] is a
prime.

Since Li≤F (N), we have that G=MiF (N) and thus |Li|= [G : Mi] =
[F (N) : F (N)∩Mi] is a prime. So G/CG(Li) is abelian, so G/CG(Li) ∈ F .
Then G/CG(F (N)) = G/

⋂s
i=1 CG(Li) ∈ F as F is a formation. So

G/CN (F (N)) = G/N∩CG(F (N)) ∈ F . Since N is solvable by hypotheses,
we have that CN (F (N)) ≤ F (N), so we get that G/F (N) ∈ F .

Consider the factor group G/L1. Since (G/L1)/(F (N)/L1)∼=G/F (N),
we have that (G/L1)/(F (N)/L1) lies in and F (N)/L1 is solvable. Sup-
pose that M/L1 is an arbitrary maximal subgroup of G/L1, then M < ·G,
so it holds either F (N) ≤ M or F (N) ∩ M < · F (N) by hypotheses.
If F (N)≤M , then F (F (N)/L1)) = F (N)/L1) ≤ M/N1. If F (N) ∩
M < ·F (N), then [F (N) : F (N) ∩ M ] is a prime. Since [F (F (N)/L1) :
F (F (N)/L1)∩M/L1] = [F (N)/L1 : F (N)/L1∩M/L1] = [F (N) : F (N)∩
M ] is a prime, we have that F (F (N)/L1) ∩M/L1 is a maximal subgroup
of F (F (N)/L1). Therefore G/L1, F (N)/L1 satisfy the hypotheses of the
Theorem, thus G/L1 ∈ F by induction. If F (N) contains another mini-
mal normal subgroup of G, L2 say, then G/L2 ∈ F , then L1 ∩ L2 = 1, it
follows that G = G/(L1 ∩ L2) ∈ F . The lemma holds. So we assume that
F (N) = L1, then G/L1 ∈ F , now applying Lemma 4.1, we get G ∈ F .

These complete our proof. ¤

Theorem 4.4. Let F be a saturated formation containing U . Assume

G is a group with a solvable normal subgroup such G/N ∈ F . If every
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element of P(F (N)) is c-supplemented in G and F (N) is quaternion-free,

then G belongs to F .

Proof. By Lemma 2.8 and hypotheses, we have that for any maximal
subgroup M , there holds either F (N) ≤ M or F (N) ∩M < ·F (N). Now
applying Lemma 4.3, it follows that G ∈ F . ¤

Theorem 4.5. Let F be a saturated formation containing U . Assume

G is a group with a normal subgroup such G/N ∈ F . If every element of

P(F ∗(N)) is c-supplemented in G and F ∗(N) is quaternion-free, then G

belongs to F .

Proof. By the hypotheses every element of P(F ∗(N)) is c-suplement-
ed in G, thus is c-supplemented in N , and F ∗(N) is quaternion-free by hy-
potheses. Now Corollary 3.3 implies that N is supersolvable, so F ∗(N) =
F (N). Then G ∈ F by Theorem 4.4. ¤
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