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On collapsing iteration semigroups of set-valued functions

By GRAZYNA LYDZINSKA (Katowice)

Abstract. We introduce the notion of collapsing iteration semigroup of set-
valued functions and study conditions under which a certain family of set-valued
functions, naturally occuring in iteration theory, is such a semigroup.

Introduction

Given a set X a function F : (0,00) x X — 2% is said to be set-valued
iteration semigroup if

F(s+t,x)=F(t,F(s,z)) forze X ands,te (0,00)

(here and in the sequel we write F'(t, A) for the image F'({t} x A) of {t} x A;
see also Section 2). This notion was introduced and studied under various
assumptions by A. SMAJDOR in [2]. In the present paper we propose
a more general notion of collapsing iteration semigroup postulating that
F:(0,00) x X — 2% satisfies the condition

F(s+t,z) C F(t,F(s,x)) forze X ands,te (0,00).

Both above definitions take pattern by the classical notion of iteration
semigroup intensively studied, among others, by M. C. ZDUN (see, for
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instance, [3]). It is well-known and easy to check that if « is a bijection
mapping X onto R then the function f : (0,00) x X — X, given by

f(t,2) = o~ (alz) + 1),
is an iteration semigroup:
fls+t,x)=f(t, f(s,x)) forzeX ands,te (0,00).
More generally we have the following observation.

Remark 1. Let o be a bijection mapping a set X onto an interval I C R
with the right endpoint ¢ € (—o0,400]. Assume that ¢ € I whenever q is
finite. Then the function f : (0,00) x X — X, given by

f(t,z) = o (min{a(z) +t,q}), (1)
is an iteration semigroup.
PROOF. Fix s € (0,00) and z € X. If a(z) + s < ¢ then
min { min{a(z) + s,¢} + t,¢} = min{a(z) + s + ¢, ¢}
and if a(x) + s > ¢ then
min { min{a(z) + s,¢} +t,¢} =min{g+¢,q} =¢
= min{a(z) + s +t,q}
for every t € (0,00). Then
f(s+t,z) =a ! (minf{a(z) + s +t,q})
o' (min { min{a(z) + s,¢} +t,q})
= o !(min {a (o™ (min{a(z) + 5,q})) + t,q})
=o' (min{a(f(s,2)) +t,q}) = f(t. f(s.2))
for every t € (0, 00) which gives the desired equality. O

It seems that for the first time this observation was made by M. C.
ZDUN (cf. [3, Theorems 5.1-8.1]). As he proved there, (1) with homeo-
morfic « is a general form of the so called continuous iteration semigroups
on an interval (cf. also [1, Theorem 1]).

The aim of the present paper is to introduce a set-valued counterpart
of (1) and to find conditions under which such set-valued functions are
collapsing iteration semigroups.
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1. Preliminaries

In what follows, given sets X, Y and a set-valued function F : X — 2V,
we define images and preimages by F' putting

FU) = | F(x)
zelU

for every U C X and
FlV):={z e X: F(z)NV # 0}

for every V C Y.

Fix a set X and a set-valued function A : X — 2% with non-empty
values. Put
S:=A(X) and g¢:=supb.

Given z,y € X and t € (0,00) we say that A(y) is t-attainable from
A(x) if
[A(z) +t] N A(y) # 0.

Ifxre X, te(0,00) and
infA(z)+t>gq

A(z) is called t-coming out.

Throughout this paper we will always assume that

(H) for every s,t € (0,00) and z,z € X such that A(z) is (s + t)-
attainable from A(z) there exists a y € X such that A(y) is s-attainable
from A(z) and A(z) is t-attainable from A(y).

Proposition 1. (i) If S is an interval then (H) holds.

(ii) Assume that all values of A are open sets. If (inf S,sup S) C cl S
then (H) holds.

(iii) Assume that all values of A are intervals. If (H) holds then
(inf S,sup S) C cl S.

PROOF. (i) Assume that S is an interval. Fix s,t € (0,00) and z,z € X
such that A(z) is (s + t)-attainable from A(z), that is

[A(z) + s] N [A(z) — t] # 0.
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Therefore there exists a real number « such that

u€ Alx)+s and wue€ A(z) —t, (2)

whence
u—se€Axz)CcS and u+te A(z)CS.

Since S is an interval and v — s < u < u + ¢ we have u € S. Then there
exists a y € X such that u € A(y). Hence and by (2) we get

Aly) N [A(x) + ] # 0

and

[A(y) + 1] N A(z) # 0.

(ii) Now assume that (inf S,sup S) C ¢l S. Fix s,t € (0,00) and z, z € X
such that
[A(z) + s+ t] N A(z) # 0.

Then [A(z) + s] N [A(z) — t] is a non-empty open subset of (inf .S, sup S).
Since the latter is contained in cl.S this means that

[A(z) + 8] N[A(z) — )N S £ 0

which completes the proof of (ii).

(iii) Assume that (H) holds. Suppose that (infS,sup S) ¢ c1.S. Then
there exists v € (inf S, sup S) and an open interval G such that v € G and

GNS=40. (3)

Since inf S < v < sup S and all values of A are intervals there exist x,z € X
such that

u<v forue Ax) and v<w forw e A(z).
We can find s,t € (0,00) such that
0 #[A(x) +s]N[A(z) — t] C G. (4)

Obviously
[A(z) + s+ t] N A(z) # 0.
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Then, by (H), there is a y € X with
A@)+5)NA@) A0 and [AG) N A@) £0.  (5)
Since A(z) + s, A(z) —t and A(y) are intervals, by (4) and (5), we have
[[A(z) + s|N[A(z) — t]] N A(y) # 0.
Then, by (4), GN S # () which contradicts (3). O

The examples below show that none of the implications in Proposi-
tion 1 can be converted; also the assumptions made in (ii) and (iii) turn
out to be essential.

Example 1. Let X be an arbitrary set and A : X — 2K be defined by
A(z) = (0,2) U (3,5).
Obviously S = (0,2) U (3,5) and
(inf S,sup S) = (0,5) Z cl S.
We will show that (H) holds. Notice that
{t € (0,00) : [A(z1) +t] N A(x2) # 0} = (0,5)
for every 1,29 € X. Fix z,z € X and let s,t € (0,00) be such that
[A(x) + s+ t] N A(z) # 0.

Then s+t € (0,5) whence s,t € (0,5). Therefore, taking any y € X, we
have [A(xz) + s] N A(y) # 0 and A(y) N [A(z) —t] # 0.

Ezample 2. Let X = {1,2,3} and A : X — 2% be defined by

(0,2) forx=1,
A(x) =4 (2,3) forz =2,
{3} forz=3.
Obviously S=(0,2)U(2,3] and (infS,sup S)=(0,3) C clS. Notice that

[A(1)4+2]NA(3) #Dbut A(3)—1={2} and 2 ¢ S. Then [A(3)—1]NS =10
and, consequently, (H) does not hold.
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Corollary 1. (i) Assume that A is single-valued. Then (H) holds if
and only if S is an interval.

(ii) Assume that all values of A are open intervals. Then (H) holds if
and only if (inf S;sup S) C cl S.

PROOF. (i) Assume (H) and take u, w € S such that u < w. Therefore
there exist points x,z € X such that A(z) = {u}, A(z) = {w}. Fix a
v € (u,w) and put

s:=v—u, ti=w—w.

Obviously A(z) + s+t = A(z), i.e. A(z) is (s + t)-attainable from A(x).
Then, by (H), there exists a y € X such that [A(z) + s] N A(y) # 0, i.e.
A(z) + s = A(y). On the other hand, A(x) 4+ s = {v}. Thus A(y) = {v}
and, consequently, v € S. This means that S is an interval and by Propo-
sition 2(i) completes the proof of (i).

The second assertion follows immediately from Proposition 2(ii)
and (iii). O

For every z € X define
T(x) :=sup {t € [0,00) : [A(z) +t] NS #0}.

Theorem 1. Let x € X. If t < 7(x) then [A(z) +t]NS # 0 and if
t > 7(x) then [A(z) +t] NS = for every t € (0,00).

PROOF. To prove the first claim it suffices to show that if for some
t € (0,7(x)) condition [A(z) +t] NS # @ holds, then [A(z) +s]NS # 0
for every s € (0,t). To this aim let t € (0, 7(z)) satisfy [A(z) +t]NS # 0
and fix an s € (0,t). Then there exists a z € X such that

[A(z) + ] N A(z) # 0.
Let u :=t —s. Then u € (0,00) and
[A(z) + s +u] N A(z) # 0.
By (H) there exists a y € X such that

[A(x) + 5] N A(y) # 0.
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Thus we have shown that
[A(z) 4+ s]NS #0,

which completes the proof in this case.
The second assertion follows directly from the definition of 7(z). O

Lemma 1. For every x € X

7(z) = ¢ — inf A(x).

PROOF. Fix an z € X and suppose that 7(x) < g — inf A(z). Then
T(z) # oo and 7(x) + inf A(z) < ¢ whence there exist s,¢ such that
s€ A(x)+7(x), t € S and s < t. Thus

t=s+(t—s) € Alx) + (r(z) + (t — 5)),

contrary to Theorem 1.

Now suppose that 7(z) > ¢ — inf A(x) for an © € X. Therefore
inf A(x) # —oo and there exists a u such that ¢ < u < inf A(z) + 7(x).
We can find an s € (0,7(z)) such that u = inf A(z) + s. Obviously u ¢ S.
Then for every v € A(x)+ s we have v > u and, consequently, v € S which
contradicts Theorem 1. O

Corollary 2. For every x € X
[A(z) + 7(z)] NS C {q}.
ProOOF. By Lemma 1 and definition of the number ¢ we have
[A(z) + 7(z)] NS = [A(z) + ¢ — inf A(z)] NS C [g, +o0] N (—o0,q] = {q}
for every xz € X. O
Let e : (0,00) x X — [0,00) be a function defined by

e(t,x) :=sup{s € [0,] : [A(z) + s] NS # 0}.
Lemma 2. For every t € (0,00) and x € X

e(t,z) = min{t, 7(x)}.
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PRrROOF. If t < 7(z) then, by Theorem 1,
[A(z)+s]NS #0
for every s € [0,t) whence
e(t,z) =sup{s € [0,¢] : [A(z) +s]N S # 0} =t = min{t, 7(x)}.
If t > 7(z) then, again by Theorem 1, we have
e(t,z) =sup {s € [0,¢] : [A(z) + s]N S # 0}
=sup {s € [0,7(z)] : [A(z) + 5] NS # 0} = 7(x) = minft, 7(z)}.

O

2. Collapsing iteration semigroups

In what follows, given a set-valued function F : (0,00) x X — 2%, we
put

F(t,U):=F({t} xU) = | F(t,x)

zelU

whenever U C X; moreover, we will write F'(z) and F'(U) instead of
F(t,z) and F(t,U), respectively.

Remark 2. If F: (0,00) x X — 2% is a single-valued collapsing itera-
tion semigroup then

F(s+t,z)=F(t,F(s,z))

for every s,t € (0,00) and = € X, that is F' generates a classical iteration
semigroup.

Remark 3. If S is an interval, ¢ € S whenever ¢ is finite and A is a
single-valued bijection mapping X onto S then

AT (A(2) + e(t, 7)) = A7} (min{A(2) + t,¢})

for every t € (0,00) and x € X.
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PRrROOF. Assume that S is a interval and A : X — S is a single-valued
bijection. Fix t € (0,00) and # € X. Then, by Lemmas 2 and 1 and the
equality inf{A(z)} = A(x), we have

A(x) +e(t,x) = A(x) + min{t, 7(z)}
= min {A(z) + t, A(z) + 7(z )}
= min {A(z) + t, A(z) + ¢ — inf{A(z)}}
= min{A(z) + t,q}
which gives the desired property. O

Now we pass to the problem of finding conditions under which a set-
valued function of the form

F(t,z) = A" (A(z) + e(t, 2)) (6)
is a collapsing iteration semigroup.

Lemma 3. Let F : (0,00)x X — 2% be given by (6) and let t € (0, 00)
and x € X. If t < 7(x) then

F(t,x) = A" (A(z) +t) # 0
and if t > 7(x) then
Fit,z) = {A‘l({q}), if g € S and inf A(z) € A(x);
0 otherwise.

PRrROOF. The first assertion follows directly from Lemma 2 and Theo-
rem 1. So assume that ¢t > 7(x). Again by Lemma 2 we have

F'(z) = (A( )+ 7(x )) = A_l((A(x) +7(z)) N S).
If ¢ € S and inf A(z) € A(x) then, by Lemma 1 and Corollary 2,
F'(z) = A7 ({a}).

If either ¢ € S, or inf A(x) ¢ A(x) then, again by Lemma 1 and Corollary 2,
we have

[A(z)+7(z)|] NS =10

whence F'(x) = (). O
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Proposition 2. Let F : (0,00) x X — 2% be given by (6), z € X,
and s,t € (0,00). If s+t < 7(z) then

F*(z) C F(F*(z)). (7)

PROOF. Assume that s +¢ < 7(x). To show the inclusion (7) fix a
z € F*T(z). By (6) and Lemma 2 we have

z€ Pt (z) = A7 (A(z) + (s + 1))

that is
A(2) N [A(x) + (s +1)] # 0.
Thus, by virtue of (H), there exists a y € X such that
A(Z)N[A(y)+t] #0 and A(y) N[A(x) + s] # 0.
According to Theorem 1 we have t < 7(y), whence
ze AN (A(y) +t) = F'(y) and ye A (A(z) +s) = F¥(z)
that is z € F*(F*(z)). O
Now we are in position to formulate the main result of the paper.

Theorem 2. Let F : (0,00) x X — 2% be given by (6). Then F is
a collapsing iteration semigroup if and only if either ¢ ¢ S, or, for every
x € X and s,t € (0,00) such that s +t > 7(x) and A(z) has the smallest
element, at least one of the following conditions holds:
(i) there exists a y € F(s,z) such that A(y) is t-coming out and has the
smallest element,
(i) for every z € A71({q}) there exists a y € F(s,x) such that A(z) is
t-attainable from A(y).

Before proving Theorem 2 we will derive the following consequence
of it.

Theorem 3. Let F : (0,00) x X — 2% be given by (6). Every
of the following conditions is sufficient for F' to be a collapsing iteration
semigroup:

(i) ¢¢S; (i) ¢ =o0;
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(iii) no value of A has the smallest element;

(iv) A is single-valued.

Proor. It follows immediately from Theorem 2 that each of the con-
ditions (i)—(iii) is sufficient for F' to be a collapsing iteration semigroup.

Assume that A is single-valued and ¢ € S. Fix s,t € (0,00) and x € X
such that s + ¢ > 7(z). Then, by Lemma 1, we have

s+1t>q—inf A(z).
Of course inf A(x) # —oo and
inf A(z) +s+1t>q. (8)
First assume that s < 7(z). Thus, on account of Lemma 3,
Fé(x) = A7 (A(z) + 5) # 0.

Fix a y € F*(z). Then A(y) N [A(z) + s)] # 0, that is A(z) + s = A(y)
whence, by (8), inf A(y) +t > ¢ which means that A(y) is t-coming out.

Now consider the case s > 7(x). Then, by Lemma 3 and the assump-
tions,

F*(z) = A7 ({q}) # 0.

Taking any y € F**(z) we have A(y) = {q}, whence
inffA(y)+t=q+1t>q.

To complete the proof it is enough to use Theorem 2. [l

PROOF OF THEOREM 2. Assume that F'is a collapsing iteration semi-
group and ¢ € S. Fix z € X and s,t € (0,00) such that

s+t>7(x) and infA(z) e A(z).
Obviously A=!({q}) # 0, so we can fix a z € A~!({¢}). By Lemma 3
F*¥(a) = A7 ({g})
Thus z € F¥*(z) and, consequently, there exists a y € F*(z) such that

z € F'(y). 9)
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At first assume that ¢t > 7(y). Then, by Lemma 1,
inf A(y) +¢t > q.
Since F'(y) # 0 it follows from Lemma 3 that
F'(y)=A""({q}) and infA(y) € A(y).

In such a way we have come to condition (i).
If t < 7(y) then, by Lemma 3,

whence, by (9),
A() N [AQy) +1] £ 0

and, consequently, (ii) holds true.

To prove the converse fix x € X and s,t € (0,00). If s+t < 7(x) the
assertion follows from Proposition 2 so assume that s +¢ > 7(x). If ¢ € S
then, by Lemma 3, F*T!(x) = () and (7) holds true. Thus we can assume
that ¢ € S. To prove (7) fix a z € F*T(z). Since F*T(z) # () we have, by

Lemma 3,
Fsti(z) = A7 ({q}) and inf A(z) € A(z).
In particular,
2 € A7 ({g}). (10)
Assume (i). Then there exists a y € F*(z) such that
infA(y)+t>q and infA(y) € A(y).

Thus, according to Lemma 1, 7(y) = ¢ — inf A(y) < t. Consequently, it
follows from Lemma 3 that Ff(y) = A~1({q}) whence, by (10), we have
z € Fi(y) C FY(F*(x)).

Finally assume (ii). Then [A(y) +t| N A(z) # 0 for a y € F5(x), i.e

z€ AT (A(y) +1). (11)

In particular, the set A~*(A(y) + t) is non-empty, whence, by Theorem 1,

(y
t < 7(y) and, on account of (6) and Lemma 2,
-1

(A(y) +t) = F'(y).
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Thus, by (11),
z € F'(y) C F(F*(z))
which completes the proof. O
Ezample 3. Let X =[0,1] and A : X — 2% be defined by

Alz) =[x — 1,z + 1].

Obviously S = [—1,2] and ¢ = 2. Then, by Proposition 1(i), A satisfies
condition (H). According to Lemma 1

T(r) =3 —=x (12)

for every x € X. Let F : (0,00) x X — 2% be given by (6). We will find
the explicite formula for F.
Fix t € (0,00) and x € X. If ¢t < 7(x) then, by Lemma 3,

F'(z) :A_I(A(x)—l—t) :A_l([x—1,$+1]+t)
=AY z+t-1z+t+1])
={yel0,1]:y—Ly+Nnz+t—1Lz+t+1]#0}
={yel0l]:z+t—-1<y+landy—1<z+t+1}
=[0,1N[z+t—2,z+¢t+2]
= [max{z + ¢ — 2,0},1].

If t > 7(z) then, again by Lemma 3,
F'(x) = A7 ({2}) = {1}.
Consequently, we have

. max{z +t—2,0},1], ifzx+t<3,
Fi(z) = (13)
{1}, ife4+t>3,
for every t € (0,00) and z € X. Observe that
1€ Fi(x) (14)

for every t € (0,00) and z € X.
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Now fix s,t € (0,00) and z € X. If s+t > 7(x) then, by (13) and
(14), we have F**'(z) = {1} C F'(F*(z)). Thus Proposition 2 implies
that F'is a collapsing iteration semigroup. Observe that F' does not satisfy
any of the assumptions (i)—(iv) of Theorem 3. Consequently, none of those
conditions, which are sufficient for F' to be a collapsing iteration semigroup,
is necessary.

Observe also that 7(1) = 2 and, by (13), F%(1) = {1} and Fl(y) =
[0,1] for y € [0,1]. On the other hand, again by (13),

FYF' ()= |J F'lyy= | [0,11=10,1).

yE[O,l] yE[O,I]

Consequently, F'(F'(1)) ¢ F?(1). This shows that F' does not satisfy the
condition

F'(F*(z)) C F**(z) for s,t € (0,00) and z € X,

which could serve as a definition of expanding iteration semigroup.
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