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Submanifolds of special Finsler manifolds

By ALY A. TAMIM (Giza)

Abstract. In this paper we study various properties of totally umbilic sub-
manifolds of a Finsler manifold. We also investigate Finsler submanifolds in the
case where the ambient manifold is of scalar curvature, partially isotropic, Lands-
berg, semi-C-reducible or S4-like manifold.

Introduction

It is well known that the theory of Finsler submanifolds have not yet
been studied in depth because of the tremendous computations involved
and the lack of symmetry of the horizontal second fundamental form. In
spite of these obstacles, several authors have made important contributions
to this subject from various points of view (see e.g. [1], [2], [6]). The most
natural idea is to study the induced and intrinsic connections and establish
some tensor equations relating the properties of the embedded manifold
to those of the ambient manifold.

In this paper, we try to overcome the above mentioned obstacles and
continue developing our foregoing studies of Finsler submanifolds ([11],
[13], [15], [16]) in such a way that we can extend some well-known results on
Riemannian submanifolds to the Finslerian case and also find new results
particular to Finsler submanifolds.

Mathematics Subject Classification: 53C60.
Key words and phrases: Finsler geometry, submanifolds, Landsberg, semi-C-reducible,
S4-like, partially isotropic manifolds.
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Special attention is paid to the interesting class of totally h-umbilic
submanifolds. Finsler submanifolds of Landsberg, semi-C-reducible and
S4-like manifolds are also investigated.

1. Basic concepts and definitions

Let V be a differentiable manifold of dimension n ≥ 2 and of class C∞.
We will denote by πV : TV −→ V (resp. π : T V −→ V ) the tangent bundle
of V (resp. the subbundle of nonzero vectors tangent to V ). Let X(V ) be
the set of all smooth vector fields on V and F(V ) the ring of all real-valued
smooth functions on V . Let π−1(TV ) −→ T V be the pullback bundle
associated with π and TV . Sections of π−1(TV ) are called π-vector fields
and will be denoted by barred symbols, X(π(V )) is the F(T V )-module of
π-vector fields. The canonical vector field is the π-vector field ϑ defined
by ϑ(u) = (u, u) for all u ∈ T V . We have the bundle morphisms ρ and
γ defined by ρ = (πT V , dπ) and γ(u, v) = ju(v) where ju is the natural
isomorphism between the tangent spaces TπV (v)V and Tu(TπV (v)V ).

Let ∇ be a linear connection in π−1(TV ). We associate to ∇ the
map K = ∇ϑ. The connection ∇ is said to be regular [5] if Tu(T V ) =
Vu(T V ) ⊕ Hu(T V ) for every u ∈ T V, where Vu(T V ) and Hu(T V ) :=
KerKu are respectively the vertical and horizontal subspaces at u. If V

is endowed with a regular connection, we introduce another bundle map
β := (ρ|H(T V ))−1.

Let T be the torsion of ∇. The horizontal and mixed torsion tensors
A and T are given by A(X̄, Ȳ ) = T(βX̄, βȲ ), T (X̄, Ȳ ) = T(γX̄, βȲ ). If
R is the curvature of ∇, then the horizontal, mixed and vertical curvature
tensors R, P and S are given by R(X̄, Ȳ )Z̄ = R(βX̄, βȲ )Z̄, P (X̄, Ȳ )Z̄ =
R(γX̄, βȲ )Z̄, S(X̄, Ȳ )Z̄ = R(γX̄, γȲ )Z̄.

Let (V,L) be a Finsler manifold, where L is the fundamental function.
Let g be the Finsler metric associated with L and ∇ be the Cartan connec-
tion determined by the metric g. The angular metric tensor h is defined
by h = g − `⊗ `, where the π-form ` is given by `(X̄) = L−1g(X̄, ϑ).

The tensor T induces a π-tensor field of type (0, 3), denoted again
by T , defined by T (X̄, Ȳ , Z̄) = g(T (X̄, Ȳ ), Z̄) and also induces a π-form
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C defined by C(X̄) := trace of the map Ȳ 7−→ T (X̄, Ȳ ). The horizon-
tal and vertical Ricci tensors Rich and Ricv are defined respectively by
Rich(X̄, Ȳ ) := trace of the map Z̄ 7−→ R(X̄, Z̄)Ȳ and Ricv(X̄, Ȳ ) :=
trace of the map Z̄ 7−→ S(X̄, Z̄)Ȳ . The horizontal and vertical Ricci maps
Rich

o and Ricv
o are defined respectively by Rich(X̄, Ȳ ) = g(Rich

o(X̄), Ȳ )
and Ricv(X̄, Ȳ ) = g(Ricv

o(X̄), Ȳ ). The horizontal and vertical Ricci scalar
curvatures Sch and Scv are defined respectively by Sch := trace of the map
X̄ 7−→ Rich

o(X̄) and Scv := trace of the map X̄ 7−→ Ricv
o(X̄).

Let u ∈ T V and let π be a 2-plane in π−1(TV ) spanned by two
orthogonal unit π-vectors X̄, Ȳ . The sectional curvature of π in V is
defined by

κ(π) = g(R(X̄, Ȳ )X̄, Ȳ ).

Definition 1. A Finsler manifold (V, L) endowed with the Cartan con-
nection ∇ is said to be:

(a) a Landsberg manifold, if P (X̄, Ȳ )ϑ = 0 for all X̄, Ȳ ∈ X(π(V ));

(b) a Berwald manifold, if ∇βX̄T = 0 for all X̄ ∈ X(π(V ));

(c) a locally Minkowski manifold, if it is a Berwald manifold of vanishing
horizontal curvature.

Definition 2. A Finsler manifold (V, L) endowed with the Cartan con-
nection ∇ is said to be:

(a) a semi-C-reducible manifold if dim V > 2 and if the mixed torsion
T of ∇ has the form T (X̄, Ȳ , Z̄) = σ

(n+1)SX̄,Ȳ ,Z̄(h ⊗ C)(X̄, Ȳ , Z̄) +
+ τ

c2
C(X̄)C(Ȳ )C(Z̄), where c2 := g(C, C) 6= 0, σ and τ are scalars

such that σ + τ = 1 whereas SX̄,Ȳ ,Z̄ denotes the cyclic sum over
X̄, Ȳ , Z̄;

(b) an S4-like manifold if dim V > 4 and if the vertical curvature S of ∇
has the form

S(X̄, Ȳ , Z̄, W̄ ) =
Scv

(n− 2)(n− 3)
{h(X̄, W̄ )h(Ȳ , Z̄)− h(X̄, Z̄)h(Ȳ , W̄ )}

+
1

(n− 3)
{h(Ȳ , W̄ )Ricv(X̄, Z̄)− h(X̄, W̄ )Ricv(Ȳ , Z̄)

+ h(X̄, Z̄) Ricv(Ȳ , W̄ )− h(Ȳ , Z̄)Ricv(X̄, W̄ )}.
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Definition 3. A Finsler manifold (V, L) endowed with the Cartan con-
nection ∇ is said to be:

(a) a partially isotropic manifold if there exists a scalar κ such that the
horizontal curvature R of ∇ has the form

R(X̄, Ȳ )Z̄ = κ[g(X̄, Z̄)Ȳ − g(Ȳ , Z̄)X̄] for all X̄, Ȳ , Z̄ ∈ X(π(V ));

(b) a manifold of scalar curvature if there exists a function K : T V −→ R
such that

R(ϑ, X̄, ϑ, Ȳ ) = KL2h(X̄, Ȳ ) for all X̄, Ȳ ∈ X(π(V ));

(c) a manifold of constant curvature if the function K in (b) is constant.

For a systematic study of the introduced special Finsler manifolds we
refer to [3], [7], [8], [12] and [14].

Let (V, ∗L) be an n-dimensional Finsler manifold and (M,L) an m-
dimensional Finsler submanifold of (V, ∗L), where n = m + p, p ≥ 1.
Entities of (V, ∗L) will be marked by an asterisk “*”. If ∗g and g are re-
spectively the Finsler metrics associated to ∗L and L then g = ∗g|π−1(TM).
Let C(N ) be the set of all differentiable sections of the normal vector bun-
dle N . Elements of C(N ) will be called π-normal vector fields.

The Cartan connection ∗∇ in π−1(TV ) and the induced connection ∇
in π−1(TM) are related by the Gauss formula [6]

∗∇X Ȳ = ∇X Ȳ + H̃(X, Ȳ ); X ∈ X(TM), Ȳ ∈ X(π(M)), (1)

where H̃ is the second fundamental form for the given immersion. H̃ gives
rise to the so called horizontal and vertical second fundamental forms H

and Q defined in [11]. The normal curvature vector N and the normal
curvature No are defined respectively by N(X̄) = H(X̄, ϑ) and No = N(ϑ).
The normal connection ∇⊥ in the normal vector bundle N is related to
∗∇ by the Weingarten formula

∗∇Xξ = −B̃ξX +∇⊥Xξ; ξ ∈ C(N ) (2)

where B̃ξ is the Weingarten operator associated to ξ. We have

∗g(H̃(X, Ȳ ), ξ) = g(B̃ξX, Ȳ ); X ∈ X(TM), Ȳ ∈ X(π(M)). (3)
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Notice that the normal connection∇⊥ is g⊥-metric, where g⊥ = ∗g|N . The
Weingarten operator B̃ξ gives rise to the so called horizontal and vertical
Weingarten operators Bξ and Wξ defined respectively by Bξ = B̃ξ ◦ β and
Wξ = B̃ξ ◦ γ. Using equation (1) and the fact that βX̄ = ∗βX̄ + γN(X̄),
we deduce that

∗T (X̄, Ȳ ) = T (X̄, Ȳ ) + Q(X̄, Ȳ ),

∗T (N(X̄), Ȳ )− ∗T (N(Ȳ ), X̄) = A(X̄, Ȳ ) + H(X̄, Ȳ )−H(Ȳ , X̄).



 (4)

Definition 4. For a Finsler submanifold (M, L) of a Finsler manifold,
the normal connection ∇⊥ of M is said to be h-flat, hv-flat, v-flat, if
RN = 0, PN = 0 and SN = 0, respectively.

Definition 5. An m-dimensional Finsler submanifold (M,L) of a Finsler
manifold is said to be:

(a) totally geodesic, if No = 0;

(b) totally h-umbilic, if H = g⊗µ, where µ := 1
m trace H is the horizontal

mean curvature;

(c) totally v-umbilic, if Q = L−1 h ⊗ ν, where ν := 1
m trace Q is the

vertical mean curvature;

(d) h-minimal, if µ = 0;

(e) v-minimal, if ν = 0.

A detailed study of Finsler submanifolds can be found in references
[11], [13], [15] and [16].

2. Totally h-umbilic Finsler submanifolds

In this section we investigate some properties of totally h-umbilic sub-
manifolds of a Finsler manifold.

Proposition 1. For a totally h-umbilic Finsler submanifold M of a

Finsler manifold V , we have LA = ` ∧ ∗T (No, .).

Proof. If the embedded manifold M is totally h-umbilic, then H =
g ⊗ µ and N = L−1`⊗No. Consequently equation (4) takes the form

LA(X̄, Ȳ ) = `(X̄)∗T (No, Ȳ )− `(Ȳ )∗T (No, X̄), for all X̄, Ȳ ∈ X(π(M)),
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and the result then follows. ¤

Theorem 1. A necessary and sufficient condition for the coincidence

of the induced and intrinsic connections of a totally h-umbilic Finsler sub-

manifolds is that either the normal curvature No vanishes or ∗T (No, .)
vanishes.

Proof. It should firstly be noticed that the induced and intrinsic
connections of M coincide if and only if the horizontal torsion tensor A

vanishes [2]. By Proposition 1 we have LA = `∧∗T (No, .). If either No = 0
or ∗T (No, .) = 0, then the horizontal torsion tensor A vanishes.

Conversely, assume that the horizontal torsion tensor A vanishes.
Proposition 1 implies that ` ∧ ∗T (No, .) = 0. Then there exists a func-
tion f ∈ F(T V ) such that

∗T (No, X̄) = f`(X̄) ∀ X̄ ∈ X(π(M)). (5)

Setting X̄ = ϑ and noting that `(ϑ) = L, we get ∗T (No, ϑ) = 0 = fL

so that f = 0. Consequently, equation (5) reduces to ∗T (No, .) = 0. But
∗T (No, .) = 0 if either No = 0 or ∗T (No, .) = 0. ¤

We recall from [11] the following lemma which will be used in the
sequel.

Lemma 1. For every X, Y ∈ X(TM) and Z̄ ∈ X(π(M)), we have

∗R(X,Y )Z̄ = R(X, Y )Z̄ + B̃H̃(Y,Z̄)X − B̃H̃(X,Z̄)Y + (∇̄Y H)(ρX, Z̄)

− (∇̄XH)(ρY, Z̄) + (∇̄Y Q)(K(X), Z̄)− (∇̄XQ)(K(Y ), Z̄)

−H(T(X, Y ), Z̄) + Q(R(X,Y )ϑ, Z̄).

A generalization of Proposition 3.1 of [4] is given by

Theorem 2. A totally h-umbilic submanifold M of a Finsler manifold

V of scalar curvature is of scalar curvature.

Proof. Applying Lemma 1 for X = βX̄, Y = βȲ , we get

∗R(X̄, Ȳ )Z̄ + ∗P (N(X̄), Ȳ )Z̄ − ∗P (N(Ȳ ), X̄)Z̄ + ∗S(N(X̄), N(Ȳ ))Z̄

= R(X̄, Ȳ )Z̄ + BH(Ȳ ,Z̄)X̄ −BH(X̄,Z̄)Ȳ + (∇̄βȲ H)(X̄, Z̄) (6)

−(∇̄βX̄H)(Ȳ , Z̄)−H(A(X̄, Ȳ ), Z̄) + Q(R(X̄, Ȳ )ϑ, Z̄).
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Setting X̄ = Z̄ = ϑ in (6), using the properties of the curvature tensors
∗P , ∗S and taking equation (3) into account, we deduce that

∗R(ϑ, Ȳ , ϑ, W̄ ) + ∗P (No, Ȳ , ϑ, W̄ ) = R(ϑ, Ȳ , ϑ, W̄ ) + ∗g(H(ϑ, W̄ ), N(Ȳ ))

− ∗g(No,H(Ȳ , W̄ )). (7)

As the embedded manifold M is totally h-umbilic and ∗∇∗βϑ
∗T (L2µ, Ȳ )

is a normal π-vector field, equation (7) leads to

R(ϑ, Ȳ , ϑ, W̄ ) = ∗R(ϑ, Ȳ , ϑ, W̄ ) + ‖µ‖2L2h(Ȳ , W̄ ).

Since the ambient manifold V is of scalar curvature ∗K, the horizontal
curvature ∗R satisfies the condition ∗R(ϑ, Ȳ , ϑ, W̄ ) = ∗K∗L2∗h(Ȳ , W̄ ).
Consequently, since h = ∗h|π−1(TM) and L = ∗L|TM , we deduce that

R(ϑ, Ȳ , ϑ, W̄ ) = L2(K + ‖µ‖2)h(Ȳ , W̄ ),

where we have put K = ∗K|TM . Hence M is of scalar curvature
K + ‖µ‖2. ¤

Corollary 1. A totally h-umbilic submanifold of a Finsler manifold

of constant curvature is of constant curvature if and only if µ is constant.

Theorem 3. A totally geodesic Finsler submanifold M of a Finsler

manifold V of scalar curvature is of scalar curvature.

Proof. Using the properties of the curvature tensors ∗R, ∗P, equation
(6) takes the form

∗R(X̄, Ȳ , Z̄, W̄ ) + ∗P (N(X̄), Ȳ , Z̄, W̄ )− ∗P (N(Ȳ ), X̄, Z̄, W̄ )

+∗S(N(X̄), N(Ȳ ), Z̄, W̄ )

= R(X̄, Ȳ , Z̄, W̄ ) + ∗g(H(X̄, W̄ ), H(Ȳ , Z̄))− ∗g(H(Ȳ , W̄ ),H(X̄, Z̄)).

The above equation for X̄ = Z̄ = ϑ leads to

∗R(ϑ, Ȳ , ϑ, W̄ ) + ∗P (No, Ȳ , ϑ, W̄ )

= R(ϑ, Ȳ , ϑ, W̄ ) + ∗g(H(ϑ, W̄ ), N(Ȳ ))− ∗g(No,H(Ȳ , W̄ )).

We recall [11] that No = 0 if and only if N = 0. Assume that M is
totally geodesic (No = 0). Then N = 0, and the last equation reduces to
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∗R(ϑ, Ȳ , ϑ, W̄ ) = R(ϑ, Ȳ , ϑ, W̄ ). As the ambient manifold V is of scalar
curvature, we conclude that R(ϑ, Ȳ , ϑ, W̄ ) = KL2h(Ȳ , W̄ ), which means
that M is of scalar curvature. This completes the proof. ¤

Theorem 4. A totally h-umbilic submanifold M of a partially isotrop-

ic Landsberg manifold V is partially isotropic if and only if ∇⊥βX̄µ = 0
for all X̄ ∈ X(π(M)).

Proof. Since the ambient manifold V is a Landsberg manifold (∗P =
0) and since the embedded manifold M is totally h-umbilic, equation (6)
takes the form
∗R(X̄, Ȳ )Z̄=R(X̄, Ȳ )Z̄+BH(Ȳ ,Z̄)X̄−BH(X̄,Z̄)Ȳ +(∇̄βȲ H)(X̄, Z̄)

−(∇̄βX̄H)(Ȳ , Z̄)−H(A(X̄, Ȳ ), Z̄)+Q(R(X̄, Ȳ )ϑ, Z̄).
(8)

If V is partially isotropic, then ∗R(X̄, Ȳ )Z̄ = κ[∗g(X̄, Z̄)Ȳ − ∗g(Ȳ , Z̄)X̄]
for all X̄, Ȳ , Z̄ ∈ X(π(V )). Hence we have ∗R(X̄, Ȳ )Z̄ ∈ X(π(M)) for all
X̄, Ȳ , Z̄ ∈ X(π(M)). Therefore, for every W̄ ∈ X(π(M)), equation (8)
reduces to

R(X̄, Ȳ , Z̄, W̄ ) = (κ + ‖µ‖2)
[
g(Ȳ , W̄ )g(X̄, Z̄)− g(X̄, W̄ )g(Ȳ , Z̄)

]
. (9)

Now, by equation (9) M is partially isotropic if and only if µ is constant,
and hence if and only if ∇⊥Xµ= 0 for every X ∈X(TM). As ∇⊥γXµ= 0
by Theorem 2 of [13], M is partially isotropic if and only if ∇⊥βX̄µ van-
ishes. ¤

The following results follow from Theorem 4.

Corollary 2. A minimal totally h-umbilic submanifold of a partially

isotropic Landsberg manifold is partially isotropic.

Corollary 3. A totally geodesic totally h-umbilic submanifold of a

partially isotropic Landsberg manifold is partially isotropic.

Corollary 4. A totally h-umbilic submanifold of a locally Minkowski

manifold is partially isotropic if and only if ∇⊥βX̄µ = 0 for all X̄ ∈
X(π(M)).

Theorem 5. For a totally h-umbilic submanifold M of a partially

isotropic Landsberg manifold V we have
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(a) the horizontal scalar curvature Sch is nonnegative if and only if κ is

nonnegative;

(b) ∇γX̄ Sch = 0 for all X̄ ∈ X(π(M)); i.e., Sch does not vary in the

vertical direction;

(c) ∇βX̄ Sch = 0 for all X̄ ∈ X(π(M)) if and only if M is h-minimal, µ is

constant or ∇⊥βX̄µ = 0.

Proof. By equation (9), we have Rich(X̄, Ȳ ) = (m − 1)(κ + ‖µ‖2)
g(X̄, Ȳ ). By the nondegeneracy of g, we deduce from this relation that
Rich

0 = (m− 1)(κ + ‖µ‖2)I, consequently

Sch = m(m− 1)(κ + ‖µ‖2). (10)

Now, (a) follows from (10), (b) follows from (10) and the fact that
∇⊥γX̄µ = 0 for every X̄ ∈ X(π(M)). Finally by equation (10) we can
easily show that ∇βX̄ Sch = 2m(m−1)∗g(∇⊥βX̄µ, µ). Hence, ∇βX̄ Sch = 0
if and only if µ = 0, µ = constant or ∇⊥βX̄µ = 0. ¤

The following two corollaries follow from Theorem 5.

Corollary 5. For a totally h-umbilic submanifold M of a locally

Minkowski manifold V , we have

(a) the scalar curvature Sch is nonnegative and Sch = 0 if and only if M

is h-minimal,

(b) Sch does not vary in the vertical direction,

(c) ∇βX̄ Sch = 0 for all X̄ ∈ X(π(M)) if and only if M is h-minimal, µ is

constant or ∇⊥βX̄µ = 0.

Corollary 6. For a minimal totally h-umbilic submanifold of a locally

Minkowski manifold, the curvature tensor R vanishes.

Let RN be the curvature transformation of the normal connection∇⊥.
Using equations (1) and (2), we get

Lemma 2. For every X, Y ∈ X(TM) and for every ξ ∈ C(N ), we

have

∗R(X,Y )ξ = RN(X, Y )ξ + H̃(X, B̃ξY )− H̃(Y, B̃ξX) + B̃∇⊥Y ξX

− B̃∇⊥XξY + TB̃ξ
(X, Y ),
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where TB̃ξ
(X,Y ) is given by TB̃ξ

(X, Y ) = ∇XB̃ξY −∇Y B̃ξX− B̃ξ[X,Y ].

Theorem 6. If M is a totally h-umbilic Finsler submanifold of a

locally Minkowski manifold V , then ∇⊥ is h-flat.

Proof. Applying Lemma 2 for X = βX̄, Y = βȲ and taking equation
(3) into account, we conclude that

∗R(X̄, Ȳ , ξ, η) + ∗P (N(X̄), Ȳ , ξ, η)− ∗P (N(Ȳ ), X̄, ξ, η)

+∗S(N(X̄), N(Ȳ ), ξ, η) = RN (X̄, Ȳ , ξ, η)

+g(BηX̄, BξȲ )− g(BηȲ , BξX̄).

(11)

If V is locally Minkowski (∗R = ∗P = 0) and if M is totally h-umbilic
(Bξ = ∗g(ξ, µ)I and N = L`⊗ µ), it follows that

∗S(N(X̄), N(Ȳ ), ξ, η) = 0 and g(BηX̄, BξȲ ) = g(BηȲ , BξX̄).

Consequently, by substituting into (11), we have RN (X̄, Ȳ , ξ, η) = 0. This
completes the proof. ¤

3. Submanifolds of a Landsberg manifold

In this section, the ambient manifold (V, ∗L) will be a Landsberg man-
ifold.

Proposition 2. If M is a Landsberg submanifold of a Landsberg

manifold V , then the induced and intrinsic connections of M coincide.

Proof. Applying Lemma 1 for X = γX̄, Y = βȲ , we get
∗P (X̄, Ȳ )Z̄ + ∗S(X̄,N(Ȳ ))Z̄ = P (X̄, Ȳ )Z̄ + WH(Ȳ ,Z̄)X̄

−BQ(X̄,Z̄)Ȳ − (∇̄γX̄H)(Ȳ , Z̄) + (∇̄βȲ Q)(X̄, Z̄)

−H(T (X̄, Ȳ ), Z̄) + Q(P (X̄, Ȳ )ϑ, Z̄).

(12)

Since both the ambient and the embedded manifolds are Landsberg, then
equation (12) takes the form

∗S(X̄,N(Ȳ ))Z̄ = WH(Ȳ ,Z̄)X̄ −BQ(X̄,Z̄)Ȳ − (∇̄γX̄H)(Ȳ , Z̄)

+ (∇̄βȲ Q)(X̄, Z̄)−H(T (X̄, Ȳ ), Z̄).
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Setting Ȳ = Z̄ = ϑ, we get WNoX̄ = 0. This together with (3) gives
∗g(Q(X̄, Ȳ ), No) = 0 for every Ȳ ∈ X(π(M)). Now the result follows from
Theorem 1 of [11]. ¤

Lemma 3. For a submanifold M of a Landsberg manifold V , we have

PN = 0 if and only if ∗S(X̄, N(Ȳ ), ξ, η) = g(WηX̄, BξȲ )− g(BηȲ , WξX̄),
for every ξ, η ∈ C(N ).

Proof. Applying Lemma 2 for X = γX̄, Y = βȲ and using equation
(3) we have, for every ξ, η ∈ C(N ),

∗P (X̄, Ȳ , ξ, η) + ∗S(X̄,N(Ȳ ), ξ, η) = PN (X̄, Ȳ , ξ, η) + g(WηX̄, BξȲ )

− g(BηȲ , WξX̄). (13)

As the ambient manifold V is Landsberg, the result follows from equa-
tion (13). ¤

Using Lemma 3, we obtain

Theorem 7. For a submanifold of a Landsberg manifold, ∇⊥ is hv-

flat if and only if ∗S(X̄, N(Ȳ ), ξ, η) = g(WηX̄, BξȲ ) − g(BηȲ ,WξX̄), for

every ξ, η ∈ C(N ).

In [11] we have shown that for a submanifold M of a Landsberg man-
ifold V , if No = 0 then M is also a Landsberg manifold and H = 0.
Combining this fact with Theorem 7, we have

Corollary 7. If M is a totally geodesic submanifold of a Landsberg

manifold V , then ∇⊥ is hv-flat.

Theorem 8. A minimal totally v-umbilic Finsler submanifold M of

a Berwald manifold V is a Berwald manifold.

Proof. Using equations (1), (2) and (4), we have, for every X̄, Ȳ , Z̄ ∈
X(π(M)),

(∗∇∗βX̄
∗T )(Ȳ , Z̄) = (∇βX̄T )(Ȳ , Z̄)−BQ(Ȳ ,Z̄)X̄ + (∇̄βX̄Q)(Ȳ , Z̄)

− (∗∇γN(X)
∗T )(Ȳ , Z̄) + H(X̄, T (Ȳ , Z̄))

− ∗T (H(X̄, Ȳ ), Z̄)− ∗T (Ȳ , H(X̄, Z̄)).
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Since the ambient manifold V is Berwald (∗∇∗βX̄
∗T = 0) and since

∗∇γN(X)
∗T , ∗T (H(X̄, Ȳ ), Z̄) are π-normal, the above equation gives

(∇βX̄T )(Ȳ , Z̄) = BQ(Ȳ ,Z̄)X̄. If M is totally v-umbilic and minimal, then
BQ(Ȳ ,Z̄)X̄ = 0 and the result follows. ¤

Theorem 8 shows that a totally geodesic submanifold of a Berwald
manifold is a Berwald manifold if and only if BQ(Ȳ ,Z̄)X̄ = 0.

4. Submanifolds of semi-C-reducible manifolds

In this section, the ambient Finsler manifold (V, ∗L) will be a semi-C-
reducible manifold.

The following result generalizes Theorem 2.1 of [10].

Theorem 9. A submanifold of a semi-C-reducible manifold is semi-

C-reducible.

Proof. From the definition of a semi-C-reducible manifold, we have

∗T (X̄, Ȳ , Z̄) =
∗σ

(n + 1)
{∗h(X̄, Ȳ )∗C(Z̄) + ∗h(Ȳ , Z̄)∗C(X̄)

+ ∗h(X̄, Z̄)∗C(Ȳ )
}

+
∗τ
∗c2

∗C(X̄)∗C(Ȳ )∗C(Z̄),
(14)

for every X̄, Ȳ , Z̄ ∈ X(π(V )), where the scalars ∗σ and ∗τ satisfy the
condition ∗σ+∗τ = 1 and the function ∗c2 is given by ∗c2 = ∗g(∗C, ∗C) 6= 0.
As h = ∗h|π−1(TM) we deduce, from equation (14), that

C = %∗C|π−1(TM) and c2 = %2∗c2 where % =
m + 1
n + 1

∗σ +
∗τ
∗c2

c2.

Consequently equations (4) and (14) imply, for every X̄, Ȳ , Z̄ ∈ X(π(M)),
that

T (X̄, Ȳ , Z̄) =
∗σ

%(n + 1)
{h(X̄, Ȳ )C(Z̄) + h(Ȳ , Z̄)C(X̄) + h(X̄, Z̄)C(Ȳ )}

+
∗τ

%3 ∗ c2
C(X̄)C(Ȳ )C(Z̄).
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By the nondegeneracy of the metric g, we obtain

T (X̄, Ȳ ) =
∗σ

%(n + 1)
{
h(X̄, Ȳ )b̄ + ϕ(Ȳ )C(X̄) + ϕ(X̄)C(Ȳ )

}

+
∗τ

%3 ∗ c2
C(X̄)C(Ȳ )b̄,

where b̄ is the π-vector field associated with the π-form C under the duality
defined by g and ϕ is the π-tensor field defined by ϕ = I−L−1`⊗ϑ. Taking
the trace of both sides of the above equation and noting that h(X̄, b̄) =
C(X̄), C(ϕ(X̄)) = C(X̄), we deduce that (1− (m+1)∗σ

(n+1)% − c2∗τ
%3∗c2 )C = 0. Since

the embedded manifold is Finsler, C 6= 0. Thus (1− (m+1)∗σ
(n+1)% − c2∗τ

%3∗c2 )C = 0

if and only if (m+1)∗σ
(n+1)% + c2∗τ

%3∗c2 = 1. If we put σ = (m+1)∗σ
(n+1)% and τ = c2∗τ

%3∗c2 ,
then σ + τ = 1 and the π-tensor field T takes the form

T (X̄, Ȳ , Z̄) =
σ

m + 1
{
h(X̄, Ȳ )C(Z̄) + h(Ȳ , Z̄)C(X̄) + h(X̄, Z̄)C(Ȳ )

}

+
τ

c2
C(X̄)C(Ȳ )C(Z̄).

This means that M is a semi-C-reducible submanifold. ¤

Proposition 3. For a submanifold M of a semi-C-reducible manifold

V , the vertical second fundamental form Q takes the form Q = (
∗σ

n+1 h +
∗τ

%∗c2 C ⊗C)⊗ ∗b̄, where ∗b̄ is the π-vector field associated with the π-form
∗C under the duality defined by ∗g.

Proof. Using equation (4), it follows that ∗g(Q(X̄, Ȳ ), ξ) =
∗g(∗T (X̄, Ȳ ), ξ), for all X̄, Ȳ ∈ X(π(M)), ξ ∈ C(N ). By (14) this equation
reduces to

∗g(Q(X̄, Ȳ ), ξ) =
( ∗σ

n + 1
h(X̄, Ȳ ) +

∗τ
%2∗c2

C(X̄)C(Ȳ )
)
∗C(ξ),

since ∗h(X̄, ξ) = 0 and h = ∗h|π−1(TM). Let ∗b̄ be the π-vector field
associated with the π-form ∗C under the duality defined by the metric ∗g.
Then the result follows from the nondegeneracy of the metric ∗g. ¤

Corollary 8. If ∗b̄ is tangential to a submanifold M of a semi-C-

reducible manifold V , then the vertical second fundamental form Q van-

ishes.
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Proposition 4. The horizontal torsion tensor A of a submanifold M

of a semi-C-reducible manifold V can be given by

A(X̄, Ȳ ) = ∗g(∗b̄, N(X̄))F (Ȳ )− ∗g(∗b̄, N(Ȳ ))F (X̄),

where F is the π-tensor field defined by F = (
∗σ

n+1ϕ +
∗τ

%2∗c2 C ⊗ b̄).

Proof. By equation (4), we have, for every X̄, Ȳ ∈ X(π(M)),

g(A(X̄, Ȳ ), Z̄) = ∗g(∗T (N(X̄), Ȳ ), Z̄)− ∗g(∗T (N(Ȳ ), X̄), Z̄).

From the symmetry of the torsion tensor ∗T , it follows that

g(A(X̄, Ȳ ), Z̄) = ∗g(Q(Ȳ , Z̄), N(X̄))− ∗g(Q(X̄, Z̄), N(Ȳ )).

Then, by Proposition 3, we have

g(A(X̄, Ȳ ), Z̄) = ∗g(∗b̄, N(X̄))
( ∗σ

n + 1
h +

∗τ
%2∗c2

C ⊗ C

)
(Ȳ , Z̄)

− ∗g(∗b̄, N(Ȳ ))
( ∗σ

n + 1
h +

∗τ
%2∗c2

C ⊗ C

)
(X̄, Z̄).

The result follows from the nondegeneracy of the Finsler metric g. ¤

Now we present a generalization of Theorem 1 of [9].

Theorem 10. For a submanifold M of a semi-C-reducible manifold

V , the induced and intrinsic connections of M coincide if and only if M is

totally geodesic, ∗b̄ = 0 or ∗b̄ is tangential to M .

Proof. If M is either totally geodesic, ∗b̄ = 0 or ∗b̄ is tangential to
M , Proposition 4 implies that A vanishes. This means that the induced
connection ∇ of M is g-Cartan [11].

Conversely, assume that the horizontal torsion tensor A vanishes. It
follows, from Proposition 4 again, that ∗g(∗b̄, N(X̄))F (Ȳ )= ∗g(∗b̄, N(Ȳ ))×
F (X̄). Setting Ȳ = ϑ in this equality, the left-hand side vanishes iden-
tically. Hence, ∗g(∗b̄, No)F = 0. But ∗g(∗b̄, No)F = 0 if and only if
∗g(∗b̄, No) = 0 or F = 0. If F = 0, then ϕ = 0, since the rank of
the matrix representing ϕ is greater than one. But ϕ = 0 implies that
I = L−1`⊗ϑ which means that M is a submanifold of dimension one, con-
tradicting Theorem 9. Therefore, ∗g(∗b̄, No)F = 0 if and only if No = 0,
∗b̄ = 0 or ∗b̄ is tangential to M . This completes the proof. ¤
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In [14] we have shown that for a semi-C-reducible manifold V the
relation

∗S(X̄1, X̄2, X̄3, X̄4) = ∗h(X̄1, X̄4)∗G(X̄2, X̄3)− ∗h(X̄2, X̄4)∗G(X̄1, X̄3)

+ ∗h(X̄2, X̄3)∗G(X̄1, X̄4)− ∗h(X̄1, X̄3)∗G(X̄2, X̄4), (15)

holds, for all X̄1, X̄2, X̄3, X̄4 ∈ X(π(V )), where ∗G is the π-tensor field
defined by

∗G =
1
2

( ∗σ∗c
n + 1

)2
∗h +

(( ∗σ
n + 1

)2

+
∗σ∗τ
n + 1

)
∗C ⊗ ∗C.

Using Lemmas 1, 2 and taking into account the fact that the vertical
Wiengarten operator is self-adjoint, one can deduce

Lemma 4. For every X̄1, X̄2, X̄3, X̄4 ∈ X(π(M)), ξ1, ξ2 ∈ C(N ), we

have

(a) ∗S(X̄1, X̄2, X̄3, X̄4) = S(X̄1, X̄2, X̄3, X̄4)+∗g(Q(X̄1, X̄4), Q(X̄2, X̄3))

− ∗g(Q(X̄1, X̄3), Q(X̄2, X̄4)),

(b) ∗S(X̄1, X̄2, ξ1, ξ2) = SN (X̄1, X̄2, ξ1, ξ2) + g([Wξ1 ,Wξ2 ]X̄1, X̄2).

Theorem 11. If M is a totally v-umbilic submanifold of a semi-C-

reducible manifold V , then ∇⊥ is v-flat.

Proof. Since M is totally v-umbilic, we have Wξ = L−1∗g(ν, ξ)ϕ for
all ξ ∈ C(N ). Consequently, it follows from Lemma 4(b) that

∗S(X̄1, X̄2, ξ1, ξ2) = SN (X̄1, X̄2, ξ1, ξ2)

∀ X̄1, X̄2 ∈ X(π(M)), ξ1, ξ2 ∈ C(N ).

On the other hand, since the ambient Finsler manifold V is semi-C-
reducible, we obtain from (15) that

∗S(X̄1, X̄2, ξ1, ξ2) = ∗h(X̄1, ξ2) ∗G(X̄2, ξ1)− ∗h(X̄2, ξ2) G∗(X̄1, ξ1)

+ ∗h(X̄2, ξ1) ∗G(X̄1, ξ2)− ∗h(X̄1, ξ1) ∗G(X̄2, ξ2).

Since ∗h(X̄i, ξi) = 0; i = 1, 2; it follows that ∗S(X̄1, X̄2, ξ1, ξ2) = 0 and
consequently SN = 0. Hence ∇⊥ is v-flat. ¤
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5. Submanifolds of S4-like manifolds

In this section, the ambient Finsler manifold (V, ∗L) will be an S4-like
manifold.

Using Lemma 4(a) and taking into account the fact that h=∗h|π−1(TM),
we have

Proposition 5. If the ambient Finsler manifold is an S4-like manifold,

then the π-tensor field S of the embedded manifold M is given by

S(X̄1, X̄2, X̄3, X̄4)

=
∗ Scv

(n− 2)(n− 3)
[
h(X̄1, X̄4)h(X̄2, X̄3)− h(X̄1, X̄3)h(X̄2, X̄4)

]

+
1

(n− 3)
[
h(X̄2, X̄4))∗Ricv(X̄1, X̄3) + h(X̄1, X̄3)∗Ricv(X̄2, X̄4)

− h(X̄1, X̄4)∗Ricv(X̄2, X̄3)− h(X̄2, X̄3)∗Ricv(X̄1, X̄4)
]

+ ∗g(Q(X̄1, X̄3), Q(X̄2, X̄4))− ∗g(Q(X̄1, X̄4), Q(X̄2, X̄3)),

for all X̄i ∈ X(π(M)); 1 ≤ i ≤ 4.

Lemma 5. For a totally v-umbilic submanifold M of an S4-like man-

ifold V we have

(a) Ricv(X̄1, X̄2) =
(

n−m

(n− 2)(n− 3)
∗ Scv + (m− 2)L−2‖ν‖2

)
h(X̄1, X̄2)

+
m− 3
n− 3

∗Ricv(X̄1, X̄2),

(b) Scv = (m− 2)
(

2n−m− 3
(n− 2)(n− 3)

∗ Scv + (m− 1)L−2‖ν‖2

)
,

for every X̄1, X̄2 ∈ X(π(M)).

Proof. (a) Since M is a totally v-umbilic submanifold, it follows from
Proposition 5 that

S(X̄1, X̄2)X̄3 =
( ∗ Scv

(n− 2)(n− 3)
− L−2‖ν‖2

)

× {h(X̄2, X̄3)ϕ(X̄1)− h(X̄1, X̄3)ϕ(X̄2)}
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+
1

(n− 3)
{h(X̄1, X̄3)∗Ricv

o(X̄2)− h(X̄2, X̄3)∗Ricv
o(X̄1)

+ ∗Ricv(X̄1, X̄3)ϕ(X̄2)− ∗Ricv(X̄2, X̄3)ϕ(X̄1)},

for every X̄1, X̄2, X̄3 ∈ X(π(M)).

Since

h(ϕ(X̄1), X̄2) = h(X̄1, X̄2), ∗h(X̄2,
∗Ricv

o(X̄1)) = ∗Ricv(X̄2, X̄1),

∗Ricv(X̄2, ϕ(X̄1)) = ∗Ricv(X̄2, X̄1) and ∗Ricv(X̄1, X̄2) = ∗Ricv(X̄2, X̄1),

we conclude that

Ricv(X̄1, X̄2) =
(

n−m

(n− 2)(n− 3)
∗ Scv + (m− 2)L−2‖ν‖2

)
h(X̄1, X̄2)

+
m− 3
n− 3

∗Ricv(X̄1, X̄2).

(b) By the nondegeneracy of the metric ∗g, we deduce from (a) that

Ricv
o(X̄1) =

(
n−m

(n− 2)(n− 3)
∗ Scv + (m− 2)L−2‖ν‖2

)
ϕ(X̄1)

+
m− 3
n− 3

∗Ricv
o(X̄1).

The result then follows by taking the trace of both sides of the above
relation. ¤

Combining Lemma 5 and Proposition 5, we infer

Theorem 12. A totally v-umbilic submanifold of an S4-like manifold

is S4-like.

Theorem 13. If M is a totally v-umbilic submanifold of an S4-like

manifold V , then ∇⊥ is v-flat.

Proof. Since M is a totally v-umbilic submanifold, Lemma 4(b) im-
plies that

∗S(X̄1, X̄2, ξ1, ξ2) = SN (X̄1, X̄2, ξ1, ξ2),
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for all X̄1, X̄2 ∈ X(π(M)), ξ1, ξ2 ∈ C(N ).

On the other hand, since the ambient Finsler manifold is S4-like, we get

∗S(X̄1, X̄2, ξ1, ξ2)

=
∗ Scv

(n− 2)(n− 3)
{∗h(X̄1, ξ2)∗h(X̄2, ξ1)− ∗h(X̄1, ξ1)∗h(X̄2, ξ2)}

+
1

(n− 3)
{∗h(X̄2, ξ2)∗Ricv(X̄1, ξ1)− ∗h(X̄1, ξ2)∗Ricv(X̄2, ξ1)

+ ∗h(X̄1, ξ1)∗Ricv(X̄2, ξ2)− ∗h(X̄2, ξ1)∗Ricv(X̄1, ξ2)}.
Since ∗h(X̄i, ξi) = 0; i = 1, 2; it follows that ∗S(X̄1, X̄2, ξ1, ξ2) = 0 and,
consequently SN = 0. Hence ∇⊥ is v-flat. ¤
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