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Decomposable subspaces of Banach spaces

By MANUEL GONZÁLEZ (Santander) and ANTONIO MARTINÓN (La Laguna)

Abstract. We introduce and study the notion of hereditarily A-indecom-
posable Banach space for A a space ideal. The case A = F, the finite dimensional
spaces, corresponds to the hereditarily indecomposable spaces. We show that
several properties of the case A = F extend to some other space ideals.

1. Introduction

W. T. Gowers and B. Maurey [10] constructed the first example
of a hereditarily indecomposable Banach space (HI space, for short). The
main property of the HI spaces is that they do not contain unconditional
basic sequences. So they provide a counterexample to an old question in
Banach space theory. Moreover, a result of Weis [18] characterizes the HI
spaces as those spaces X such that for every Banach space Y any operator
in L(X, Y ) is upper semi-Fredholm or strictly singular.

In this paper we consider a natural notion of hereditarily A-indecom-
posable Banach space associated to a space ideal A: a Banach space X

is hereditarily A-indecomposable (HAI space, for short) if no (closed) sub-
space of X can be written as the direct sum of two subspaces which are
not in A. In the case A = F, the finite dimensional spaces, we obtain the
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320 Manuel González and Antonio Martinón

HI spaces. We show that the notion of HAI space is nontrivial for A the
reflexive spaces, the weakly sequentially complete spaces, the spaces with
the Mazur property and for some other space ideals.

Note that X HI means that any two infinite dimensional subspaces M

and N of X are very close, in the sense that dist(SM , SN ) = 0, where SM

is the unit sphere of M . Similarly, X HAI means that dist(SM , SN ) = 0
when M and N do not belong to A.

We show that the HAI spaces do not contain unconditional basic se-
quences of some kinds related to A. Moreover, we show that X is HAI if and
only if L(X, Y ) = AΦ+(X,Y ) ∪ ASS(X,Y ), for any space Y . Here AΦ+

and ASS are classes of operators which were introduced in [8], [9]. These
classes generalize the upper semi-Fredholm operators and the strictly sin-
gular operators, respectively.

We also consider space ideals satisfying A = Aii. This is a condition
defined in terms of incomparability. It means that A coincides with the
class of all Banach spaces X such that every infinite dimensional subspace
of X contains an infinite dimensional subspace isomorphic to a subspace
of a space in A.

In the case X ∈A=Aii we prove that the union L(X, Y )=AΦ+(X, Y )∪
ASS(X, Y ) is disjoint, and that for each T ∈ L(X, Y ), inA(TJM ) = inA(T )
and sjA(TJM ) = sjA(T ) for all the subspaces M of X which are not in A,
where inA(T ) > 0 and sjA(T ) = 0 characterize T ∈ AΦ+ and T ∈ ASS,
respectively.

Notation and terminology. Along the paper, X,Y and Z are Banach
spaces, and we denote by X∗ and X∗∗ the dual space and the second dual
of X, respectively. A subspace is always a closed linear subspace. Given
a subspace M of X, we denote by JM the inclusion of M into X, and by
QM the quotient map from X onto X/M .

We denote by L(X, Y ) the set of all (continuous linear) operators
from X into Y . An operator T ∈ L(X,Y ) is strictly singular if from
TJM an isomorphism, we obtain that M has finite dimension; T is upper
semi-Fredholm operator if it has finite dimensional null space and closed
range.

A space ideal A is a class of Banach spaces which contains the finite
dimensional spaces and is stable under passing to isomorphic spaces, finite
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products or complemented subspaces. We refer to [14] for information on
operator ideals and space ideals.

2. Hereditarily indecomposable Banach spaces

Let A be a space ideal in the sense of Pietsch [14]. For each Banach
space X we consider

SA(X) := {M ⊂ X : M is a subspace of X and M /∈ A}.

Definition 1. A Banach space X is said to be A-indecomposable if there
are no subspaces M and N in SA such that X = M ⊕N . Equivalently, if
M, N ∈ SA(X) and X = M + N , then M ∩N 6= {0}.

The space X is said to be hereditarily A-indecomposable (HAI) if every
subspace M of X is A-indecomposable.

Remark 1. Every space in A is A-indecomposable. Moreover, if A1 ⊂
A2, then the (hereditarily) A1-indecomposable spaces are (hereditarily)
A2-indecomposable.

Remark 2. Let N`1 be the ideal of the spaces that contain no copies
of `1.

This case is trivial because the spaces in N`1 are the only hereditarily
N`1-indecomposable spaces. Indeed, if X contains a subspace isomorphic
to `1, this subspace can be written as the direct sum of two subspaces
isomorphic to `1. The same happens for N`p, 1 ≤ p < ∞.

A nontrivial example has to include a A-indecomposable space X

which is not in A. Observe that this space X cannot be isomorphic to
X ×X.

Example 1. Let A = F, the finite dimensional spaces. The hereditar-
ily F-indecomposable spaces are precisely the hereditarily indecomposable
spaces.

The existence of infinite dimensional hereditarily indecomposable
spaces has been a long-standing open problem in Banach space theory.
Finally, Gowers and Maurey have constructed an example that we de-
note XGM [10].
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Example 2. Let A = R be the reflexive spaces.
James’ space J is a hereditarily R-indecomposable, non-reflexive space.

The reason is that dim(J∗∗/J) = 1.

Example 3. Let A = WSC be the weakly sequentially complete spaces.
A Banach space X is weakly sequentially complete if and only if

B1(X) = X, where B1(X) is the subspace of all F ∈ X∗∗ which are
the weak∗-limit of some weakly Cauchy sequence in X. Observe that
B1(M) = B1(X) ∩M⊥⊥ for every subspace M of X.

The space J is a hereditarily WSC-indecomposable space which is not
weakly sequentially complete. The reason is that dim(B1(J)/J) = 1.

Example 4. Let A = M be the spaces with the Mazur property [19],
[11].

Recall that X is in M when S1(X) = X, where S1(X) is the subspace of
all weak∗-sequentially continuous elements of X∗∗. Observe that S1(M) =
S1(X) ∩M⊥⊥ for every subspace M of X.

The space C[0, ω1] is a hereditarily M-indecomposable space which
has not the Mazur property. Again, the reason is that dim(S1(C[0, ω1])/
C[0, ω1]) = 1. See [17] or [5, Proposition 3.6.b] for a direct proof.

Let Q : X∗∗ −→ X∗∗/X denote the quotient map. Given a closed
subspace M of X, we can identify M∗∗/M with Q(M⊥⊥). Thus,

Aco := {X : X∗∗/X ∈ A}

is a space ideal. For the properties of Q we refer to [20].
Observe that for every separable space Z there exists a separable space

X so that X∗∗/X is isomorphic to Z [12].

Example 5. Let A be one of the space ideals F, R or WSC. Let X be a
Banach space such that X∗∗/X is isomorphic to XGM , J or J , respectively.

The space X is a hereditarily Aco-indecomposable space which is not
in Aco.

Remark 3. The HI spaces contain no unconditional basic sequence [10].
In the case A = R, the reflexive spaces, every unconditional basic

sequence in a HRI space X generates a reflexive subspace; indeed, if an
unconditional basic sequence in X generates a nonreflexive subspace, then
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X contains an isomorphic copy of c0 or `1 [13, 1.c.13]. Since c0 and `1 are
isomorphic copy of c0 × c0 and `1 × `1 respectively, X is not a HRI space.

Similarly, if X is hereditarily WSC-indecomposable, then every un-
conditional basic sequence in X generates a weakly sequentially complete
subspace [13, 1.c.13].

In general, if (xn)n∈N is an unconditional basic sequence of X which
is HAI and N = I ∪ J is a partition of N into two infinite subsets, then
the subspace generated by (xn)n∈I or the subspace generated by (xn)n∈J

belongs to A.

The following characterizations of the hereditarily A-indecomposable
spaces will be useful later.

Proposition 1. Let A be a space ideal. For a Banach space X the

following assertions are equivalent:

1. X is HAI.

2. If M,N ∈ SA(X), then QMJN is not an isomorphism.

3. If M,N ∈ SA(X), then dist(SM , SN ) = 0.

Proof. Since the kernel of QMJN is M ∩ N and its range is (M +
N)/M , (1) and (2) are clearly equivalent. The equivalence between (1)
and (3) for infinite dimensional subspaces M and N is well known [6,
Exercise 5.15]. ¤

3. Operators on HAI spaces

Recall that the injection modulus of an operator T ∈ L(X,Y ) is de-
fined by

j(T ) := inf{‖Tx‖ : x ∈ X, ‖x‖ = 1}.

From the norm and from j we derive two operational quantities that allows
us to define two classes of operators.

Definition 2. Let A be a space ideal. Suppose that SA(X) 6= ∅ and
let Y be a Banach space. For each operator T ∈ L(X, Y ) we define the
following quantities:

sjA(T ) := sup{j(TJM ) : M ∈ SA(X)},



324 Manuel González and Antonio Martinón

inA(T ) := inf{‖TJM‖ : M ∈ SA(X)}.

Definition 3. For SA(X) 6= ∅ we define

1. ASS(X, Y ) := {T ∈ L(X, Y ) : sjA(T ) = 0}
2. AΦ+(X,Y ) := {T ∈ L(X, Y ) : inA(T ) > 0}

For SA(X) = ∅ we define ASS(X,Y ) = AΦ+(X,Y ) = L(X, Y ).

In the case A = F, the finite dimensional spaces, the quantities inF

and sjF were introduced in [16]. In this case FΦ+ = Φ+, the upper semi-
Fredholm operators, and FSS = SS, the strictly singular operators.

In the general case the quantities inA and sjA and the associated
classes of operators were introduced in [8], [9].

Theorem 1. Let A be a space ideal. For a Banach space X the

following assertions are equivalent:

1. X is HAI

2. For every space Y and every T ∈ L(X,Y ), sjA(T ) ≤ inA(T )

3. For every space Y , L(X, Y ) = AΦ+(X, Y ) ∪ ASS(X,Y )

4. For every M ∈ SA(X), the quotient map QM belongs to ASS

Proof. (1) =⇒ (2) Assume that X is HAI and let M, N ∈ SA(X).
From Proposition 1 we obtain dist(SM , SN ) = 0; that is, given ε > 0, there
exist u ∈ SM and v ∈ SN such that ‖u− v‖ < ε. Then

‖Tu‖ − ‖Tv‖ ≤ ‖T (u− v)‖ ≤ ε‖T‖.

Consequently

j(TJM ) ≤ ‖Tu‖ ≤ ‖Tv‖+ ε‖T‖ ≤ ‖TJN‖+ ε‖T‖.

Since ε > 0 is arbitrary we obtain j(TJM ) ≤ ‖TJN‖, for every M, N ∈
SA(X), hence sjA(T ) ≤ inA(T ).

(2) =⇒ (3) If T /∈ AΦ+, then inA(T ) = 0, hence sjA(T ) = 0 and we
have T ∈ ASS.

(3) =⇒ (4) Let M ∈ SA(X). As QM /∈ AΦ+ we have QM ∈ ASS.

(4) =⇒ (1) Let M, N ∈ SA(X). Since QM ∈ ASS, QMJN is not an
isomorphism. By Proposition 1 we have that X is HAI. ¤
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We say that two Banach spaces X and Y are totally incomparable
[15] if no infinite dimensional subspace of X is isomorphic to a subspace
of Y . Given a class C of Banach spaces, the class of incomparability Ci was
defined in [3] as follows:

Ci := {X : X is totally incomparable with every Y ∈ C}.

The class Ci is a space ideal. Moreover it is not difficult to see that X ∈ Cii if
and only if X has no infinite dimensional subspace in Ci, and that Ciii = Ci.

In the case A = Aii the class AΦ+ was studied in [8] and the class ASS

was studied in [4], [9], [2]; see also [1, Section 4.2].

Theorem 2. Let A = Aii be a space ideal. Suppose that SA(X) 6= ∅.
Then

AΦ+(X,Y ) ∩ ASS(X, Y ) = ∅

for every Banach space Y . Moreover, if X is a HAI space, then the union

L(X, Y ) = AΦ+(X, Y ) ∪ ASS(X, Y )

is disjoint.

Proof. Let M ∈ SA(X). Since A = Aii, there exists an infinite
dimensional subspace N of M such that N ∈ Ai. Since SA(N) = SF(N),
sjA(TJN ) = sjF(TJN ).

Let T ∈ L(X, Y ). Suppose that T ∈ ASS; i.e., sjA(T ) = 0. For every
M ∈ SA(X), we take the subspace N introduced in the previous paragraph.
Then sjA(TJN ) = sjF(TJN ) = 0, so TJN is a strictly singular operator.
Thus, for every ε > 0, there exists an infinite dimensional subspace P of
N such that ‖TJP ‖ < ε [13, 2.c.4]. Since P /∈ A, we have inA(T ) = 0,
hence T /∈ AΦ+. ¤

Proposition 2. Let A = Aii be a space ideal. Suppose that X is a

HAI space and SA(X) 6= ∅. Let T ∈ L(X, Y ). Then for every M ∈ SA(X),

inA(TJM ) = inA(T ) and sjA(TJM ) = sjA(T ).

Thus inA(TJM ) and sjA(TJM ) are constant for M ∈ SA(X).
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Proof. Let M ∈ SA(X). Basically we follow the proof of [7, Lem-
ma 3]. As in [7, Lemma 1] we can prove that for each P ∈ SA(X), there
exist U ∈ SA(P ) and a strictly singular operator S : U −→ X such that

JU + S : x ∈ U −→ x + Sx ∈ M

defines an isomorphism onto N := (JU + S)U ∈ SA(M). Note that the
hypothesis A = Aii allows us to choose U ∈ Ai.

Obviously, inA(TJM ) ≥ inA(T ) and sjA(TJM ) ≤ sjA(T ). Thus it is
enough to prove that for each P ∈ SA(X) and each ε > 0

inA(TJM ) ≤ ‖TJP ‖+ ε and j(TJP )− ε ≤ sjA(TJM ).

In order to show the first inequality, note that, for any ε′ > 0, we can
choose U so that ‖S‖ < ε′ and ‖(JU + S)−1‖ < 1 + ε′. Since TJN =
T (JU + S)(JU + S)−1, we obtain

inA(TJM ) ≤ ‖TJN‖ ≤ ‖TJU + TS‖ ‖(JU + S)−1‖
≤ (‖TJU‖+ ε′‖T‖)(1 + ε′) ≤ ‖TJP ‖+ ε′(2 + ε′)‖T‖.

For the second inequality, we choose U verifying ‖S‖ < ε′ and
‖JU + S‖−1 = j((JU + S)−1) ≥ 1 − ε′. As TJN = T (JU + S)(JU + S)−1,
we have

sjA(TJM ) ≥ j(TJN ) ≥ j(TJU + TS) j((JU + S)−1)

≥ (j(TJU )− ‖TS‖)(1− ε′) ≥ j(TJP )− ε′(2− ε′)‖T‖. ¤

Remark 4. In the case A = Aii, the components AΦ+(X,Y ) are open.
Moreover, the class AΦ+ is stable under taking products: T ∈ AΦ+(X, Y )
and S ∈ AΦ+(Y, Z) imply ST ∈ AΦ+(X, Z). Analogously, in this case,
the class ASS has closed components and it is an operator ideal [8], [9]

Proposition 3. Let A = Aii be a space ideal and let X be a HAI space.

For every subspace M of X, either M ∈ A or M contains a subspace N /∈ A

which is a HI space.

Proof. Let X be a HAI space and let M be a subspace of X. Suppose
that M /∈ A. Then M contains an infinite dimensional subspace N ∈ Ai.
Let us see that N is HI. If N = N1 ⊕ N2, then N1 ∈ A or N2 ∈ A.
Since N1, N2 ∈ Ai, we obtain that N1 or N2 is finite dimensional. Thus N

is HI. ¤
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