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On two realizability questions concerning
strongly connected Moore automata

By A. ÁDÁM (Budapest) and F. WETTL (Budapest)

Abstract. How is the simultaneous occurrence of some phenomena (namely: an
automorphism, a partial quasi-isomorphism, indistinguishable state pairs of one or an-
other type, as they are defined in [4]) possible in a strongly connected automaton? Two
questions of this character are raised and solved in the paper.

1. Introduction

§ 1. This paper is a continuation of the article [4] which is devoted
to examining the causes of non-simplicity of strongly connected Moore
automata. The concepts of partial quasi-isomorphism and three types of
indistinguishable state pairs have been introduced in [4]; in addition, the
notion of automorphism too plays an essential role in these considerations.

Among the papers (earlier than [4]) dealing with the behaviour and
simplicity of Moore automata, we refer to the works [1], [2], [3]. We men-
tion that the notions of endomorphism semigroup, automorphism group
(and other structures) associated to an automaton are introduced in the
article [7] of Peák in a detailed manner, together with the listing of a
number of important open questions. The recent publication [5] continues
[4] in another direction than the present paper.

Sixteen cases are imaginable, how the existence or lack of a nontrivial
automorphism, a partial quasi-isomorphism, indistinguishable state pairs
of type (II) or (III) can combine with each other. We show in Chapter
II that seven cases are impossible and any of the remaining nine cases
is realizable by strongly connected automata (even if automata without
indistinguishable pairs of type (I) are considered only).
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If one takes three indistinguishable states, three state pairs can be
formed from the triplet. We ask in Chapter III, how the types of the three
pairs influence each other. We get that, out of ten cases, seven are possible.

The sufficiency parts of our theorems are proved by analyzing several
examples. Sometimes we refer to automata contained already in the article
[4] — common with I. Babcsányi —, and a further example is due to A.
Nagy; we are indebted to our colleagues.

§ 2. Let A = (A, X, Y, δ, λ) be a finite Moore automaton where
A,X, Y are the sets of states, input symbols, output symbols (respec-
tively), δ : (A×X) → A is the transition function and λ : A → Y is the
output function. The terminology to be introduced is the same as the
terminology used in [2], [4].

Ha,b is meant as the set of input words p satisfying δ(a, p) 6= δ(b, p)
where (a, b) is an unordered pair of states of A. A state pair (a, b) is said
to be of type (I) if Ha,b is finite, of type (II) if Ha,b contains every input
word, of type (III) in the complementary case.

A is called a strongly connected automaton if to any ordered pair (a, b)
(where a ∈ A, b ∈ A) there is an input word p such that δ(a, p) = b.

A mapping α of the state set A into itself is called an endomorphism
if

α(δ(a, x)) = δ(α(a), x), λ(a) = λ(α(a))

are fulfilled whenever a belongs to A and x belongs to X. If α is an
endomorphism and a bijective mapping on A, then we say that α is an
automorphism. It was shown by Oehmke that each endomorphism of a
strongly connected automaton is an automorphism (see e.g. [4], Proposi-
tion 4).

A bijective mapping γ : J → K is called a partial quasi-isomorphism
if J,K are disjoint subsets of the state set of an automaton such that the
following three requirements are fulfilled:
(1) J is a strongly connected set and |J | ≥ 2,
(2) we have

δ(a, x) ∈ J & δ(γ(a), x) ∈ K & γ(δ(a, x)) = δ(γ(a), x)

whenever a ∈ J , x ∈ X such that δ(a, x) 6= δ(γ(a), x), and
(3) λ(a) = λ(γ(a)) whenever a ∈ J .

Now we again study unordered state pairs (a, b). We say that (a, b) is
a proper pair if a 6= b. The state pairs of type (II) and (III) are necessarily
proper. A pair (a, b) is called indistinguishable if λ(δ(a, p)) = λ(δ(b, p)) is
true for every input word p.

Consider six assertions defined for an automaton A:
(b–1) A has an indistinguishable proper state pair of type (I).
(b–2) A has an indistinguishable state pair of type (II).
(b–3) A has an indistinguishable state pair of type (III).
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(c–1)
(∀x)[δ(a, x) = δ(b, x)] & λ(a) = λ(b)

holds for some proper state pair (a, b) of A (where x ∈ X).
(c–2) A has a nontrivial automorphism.
(c–3) A has a partial quasi-isomorphism.

The following statement has been proved in [4] (as Proposition 2):

Proposition A. The assertions (b–1) and (c–1) are equivalent.

II. Automorphisms, partial
quasi-isomorphisms and indistinguishability

§ 3. In Chapter II we consider strongly connected finite Moore au-
tomata A. Our aim is to study how the four assertions (b–2), (b–3), (c–2),
(c–3) can be combined with each other if A does not fulfil (b–1). As usual,

we write e.g. (b–2) for the negation of (b–2), and it is expressed by (̃b–2)
that we leave indetermined whether (b–2) is negated or not.

Consider a conjunction of form

(3.1) (̃b–2)&(̃b–3)&(̃c–2)&(̃c–3).

We call (3.1) realizable if there exists a strongly connected automaton A
such that

A satisfies the assertions being non-negated (3.1),
A does not satisfy the assertions being negated in (3.1), and
A does not satisfy (b–1).
Later all the sixteen conjunctions of form (3.1) will be specified, see

(3.2) and (4.1).
The next two results have been verified in [4] (see Propositions 5, 12):

Proposition B. (c–2) implies (b–2).

Proposition C. (c–3) implies (b–1)∨(b–2)∨(b–3).

We show an improvement of Proposition C:

Proposition 1. (c–3) implies (b–1)∨(b–3).

Proof. Suppose that an automaton A satisfies (c–3), i.e., A has a
partial quasi-isomorphism γ. The definition domain J of γ is properly
included in A. Since A is strongly connected, there exists a state a(∈ J)
and an x(∈ X) such that δ(a, x) 6∈ J . The definition of partial quasi-
isomorphism implies δ(a, x) = δ(γ(a), x). Thus the type of the pair a, γ(a)
is either (I) or (III). This pair is indistinguishable, hence (b–1) or (b–3) is
valid for A.
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An easy consequence of Propositions B and 1 is:

Corollary 1. The seven conjunctions

(3.2)





(b–2) & (b–3) & (c–2) & (c–3),

(b–2) & (b–3) & (c–2) & (c–3),

(b–2) & (b–3) & (c–2) & (c–3),

(b–2) & (b–3) & (c–2) & (c–3),

(b–2) & (b–3) & (c–2) & (c–3),

(b–2) & (b–3) & (c–2) & (c–3),

(b–2) & (b–3) & (c–2) & (c–3)

are not realizable.

§ 4. Theorem 1. A conjunction of form (3.1) is realizable if and only
if it does not occur in (3.2).

The necessity part of Theorem 1 was already stated as Corollary 1.
For proving the sufficiency, we are going to show that there exist nine
automata A1,A2, . . . ,A9 (such that (b–1) is false for them) realizing the
conjuctions

(4.1)





(b–2) & (b–3) & (c–2) & (c–3),

(b–2) & (b–3) & (c–2) & (c–3),

(b–2) & (b–3) & (c–2) & (c–3),

(b–2) & (b–3) & (c–2) & (c–3),

(b–2) & (b–3) & (c–2) & (c–3),

(b–2) & (b–3) & (c–2) & (c–3),

(b–2) & (b–3) & (c–2) & (c–3),

(b–2) & (b–3) & (c–2) & (c–3),
(b–2) & (b–3) & (c–2) & (c–3),

respectively.

Example 1. A1 = (A,X, Y, δ, λ) is the trivial automaton: A = {1},
X = {x}, Y = {y}, δ(1, x) = 1, λ(1) = y. We note that every simple
automaton (among these, every automaton with a bijective λ) realizes the
first conjunction of (4.1).

We refer to § 3 of the previous paper [4] concerning automata that
realize the three following conjuctions in (4.1). Let A2 A3 A4 be the
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automata constructed in [4] as Examples 2, 3, 7, respectively. (|X| = 2 for
any of them. The value of |A| is 6, 6, 5; the value of |Y | is 2, 3, 2, resp.)

Example 2. Put A = {1, 2, 3}, X = {x1, x2}, Y = {y1, y2}; let δ, λ
be defined by Table 1 (see Fig. 1 ). This automaton A5 has neither a
nontrivial automorphism nor a partial quasi-isomorphism. The type of
the single indistinguishable pair (2, 3) is (III).

Figure 1.

i δ(i, x1) δ(i, x2) λ(i)

1 2 3 y1

2 1 3 y2

3 1 2 y2

Table 1.

Example 3. Put A = {1, 2, 3, 4, 5, 6}, X = {x1, x2}, Y = {y1, y2} ;
let δ, λ be defined by Table 2 (see Fig. 2 ). This automaton A6 — con-
structed by A. Nagy — again without automorphisms (except the identi-
cal one) and partial quasi-isomorphisms. The classes of πmax are {1, 2, 3}
and {4, 5, 6}. It can be seen easily that all the six indistinguishable state
pairs are of type (II).

Example 4. Put A = {1, 2, 3, 4, 5, 6}, X = {x1, x2, x3}, Y = {y1, y2};
let δ, λ be defined by Table 3 (see Fig. 3 ). The mapping

(
1 2 3 4 5 6
4 3 2 1 6 5

)
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Figure 2.

i δ(i, x1) δ(i, x2) λ(i)

1 5 1 y1

2 4 3 y1

3 6 2 y1

4 4 1 y2

5 5 2 y2

6 6 3 y2

Table 2.

is an automorphism of this automaton A7. There is no partial quasi-
isomorphism. The classes of πmax are {1, 2, 3, 4} and {5, 6}. It follows from
Proposition 5 of [4] that the indistinguishable pairs (1, 4), (2, 3), (5, 6)
belong to the type (II). A discussion shows that each of the remaining four
indistinguishable pairs is of type (III).

Example 5. Put A = {1, 2, 3, 4, 5, 6, 7}, X = {x1, x2, x3}, Y ={y1, y2};
let δ, λ be defined by Table 4 (see Fig. 4 ). This automaton A8 has no other
automorphism than the trivial one, and

(
2 6
3 7

)

is a partial quasi-isomorphism. The classes of πmax are {1, 2, 3, 6, 7} and
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Figure 3.

i δ(i, x1) δ(i, x2) δ(i, x3) λ(i)

1 5 2 5 y1

2 5 1 6 y1

3 6 4 5 y1

4 6 3 6 y1

5 6 6 1 y2

6 5 5 4 y2

Table 3.

{4, 5}. The type of (1, 2), (1, 3), (1, 6), (1, 7), (4, 5) is (II); the remaining
six indistinguishable pairs are of type (III).

Example 6. Put A = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, X = {x1, x2, x3}, Y =
{y1, y2}; let δ, λ be defined by Table 5 (see Fig. 5 ). The mapping

(
1 2 3 4 5 6 7 8 9 10
6 7 8 9 10 1 2 3 4 5

)

is an automorphism of this automaton A9, and
(

2 3
5 4

)

is a partial quasi-isomorphism in it. The classes of πmax are {1, 6},
{2, 5, 7, 10}, {3, 4, 8, 9}. Among the thirteen indistinguishable pairs, (2, 5),
(3, 4), (7, 10), (8, 9) are of type (III), the type of the remaining nine pairs
is (II).
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Figure 4.

i δ(i, x1) δ(i, x2) δ(i, x3) λ(i)

1 1 1 4 y1

2 2 6 5 y1

3 3 7 5 y1

4 5 1 1 y2

5 4 2 3 y2

6 6 2 5 y1

7 7 3 5 y1

Table 4.

III. Indistinguishable pairs in state triplets

§ 5. Consider a triplet states a, b, c of an automaton. We can form
three pairs (a, b), (b, c), (a, c) from these states, and each pair belongs
to one of the types (I), (II), (III). (The ordering of pairs and triplets is
indifferent in these considerations.) To any triplet of states we assign in
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Figure 5.

this manner one of the ten possible triplets of types:

(5.1)





(I, I, I), (I, I, II), (I, I, III), (I, II, II),
(I, II, III), (I, III, III), (II, II, II),
(II, II, III), (II, III, III), (III, III, III).

Let T be one of the triplets occurring in (5.1). We say that T is
realizable if there exist a strongly connected Moore automaton A and three
states a, b, c in it such that

(1) a, b, c are pairwise different and indistinguishable, and
(2) the type triplet, assigned to a, b, c, equals T.

Lemma 1. If a, b, c are arbitrary states of an automaton, then
Ha,b ∪Hb,c ⊇ Ha,c.

Proof. Suppose that an input word p belongs neither to Ha,b nor
to Hb,c. This means δ(a, p) = δ(b, p) and δ(b, p) = δ(c, p). Consequently
δ(a, p) = δ(c, p), hence p /∈ Ha,c.

Proposition 2. Let a, b, c be three states of an automaton. If the
pairs (a, b), (b, c) belong to the type (I), then (a, c) too is of type (I).
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i δ(i, x1) δ(i, x2) δ(i, x3) λ(i)

1 2 5 6 y1

2 3 3 2 y2

3 2 1 3 y1

4 5 1 4 y1

5 4 4 5 y2

6 7 10 1 y1

7 8 8 7 y2

8 7 6 8 y1

9 10 6 9 y1

10 9 9 10 y2

Table 5.

Proof. Ha,b and Hb,c are finite by the assumption. Thus
|Ha,b ∪Hb,c| < ∞ and (by Lemma 1) |Ha,c| < ∞.

Proposition 3. Let a, b, c be as in Proposition 2. If (a, b) belongs to
the type (I) and (b, c) belongs to the type (III), then the type of (a, c) is
not (II).

Proof. The supposition implies that |Ha,b| < ∞ and Hb,c is properly
included in the set F (X) consisting of all input words. It is known that
|F (X)−Hb,c| = ∞ (because px /∈ Hb,c if p /∈ Hb,c; cf. [4], § 1). Therefore

F (X) ⊃ Ha,b ∪Hb,c ⊇ Ha,c

where the second inclusion follows from Lemma 1.

§ 6. Theorem 2. Let T be a triplet occurring in (5.1). T is realizable
if and only if T differs from (I, I, II), (I, I, III), (I, II, III).

The necessity part of Theorem 2 follows immediately from Propo-
sitions 2 and 3. We verify the sufficiency statement of the theorem by
observing some automata in which the seven types in question really exist.

Let first the examples A6, A7, A8, exposed in § 4, be studied. Both
indistinguishable state triplets in A6 show the realizability of (II, II, II).
The triplet 1, 2, 3 in A7 guarantees that (II, III, III) is realizable. If we
consider the triplets 1, 2, 3 and 2, 3, 6 in A8, we get examples for the
realizability of the types (II, II, III) and (III, III, III), respectively. (We
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note that a triplet realizing (II, II, III) can be found also in an automaton
having five states only; see the states 3, 4, 5 in A4, i.e., Example 7 of [4].)

For verifying the realizability of the type (I, II, II), recall Example 5
in § 3 of [4], and consider the states 1, 2, 4 of this automaton (fulfilling
|A| = 5, |X| = 3, |Y | = 2).

Finally we have to prove that the types (I, I, I) and (I, III, III) are
realizable.

Example 7. Put A = {1, 2, 3, 4}, X = {x1, x2, x3}, Y = {y1, y2};
let δ, λ be defined by Table 6 (see Fig. 6 ). The classes of πmax are
{1, 2, 3} and {4}. The three-element class realizes (I, I, I).

Figure 6.

i δ(i, x1) δ(i, x2) δ(i, x3) λ(i)

1 4 4 4 y1

2 4 4 4 y1

3 4 4 4 y1

4 1 2 3 y2

Table 6.



20 A. Ádám and F. Wettl

Figure 7.

i δ(i, x1) δ(i, x2) δ(i, x3) δ(i, x4) λ(i)

1 1 5 5 5 y1

2 1 5 5 5 y1

3 4 5 5 5 y1

4 3 5 5 5 y1

5 1 2 3 4 y2

Table 7.

Example 8. Put A = {1, 2, 3, 4, 5}, X = {x1, x2, x3, x4}, Y = {y1, y2};
let δ, λ be defined by Table 7 (see Fig.7 ). The classes of πmax are {1, 2, 3, 4}
and {5}. The state triplets 1, 2, 3 and 1, 2, 4 realize (I, III, III). (The type
of 1, 3, 4 and 2, 3, 4 is (III, III, III).)
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