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Salem numbers and uniform distribution modulo 1

By SHIGEKI AKIYAMA (Niigata) and YOSHIO TANIGAWA (Nagoya)

Abstract. For a Salem number α of degree d, the distridution of fractional
parts of αn(n = 1, 2, . . . ) is studied. By giving explicit inequalities, it is shown to
be ‘exponentially’ close to uniform distribution when d is large.

1. Introduction

Uniform distribution of sequences of exponential order growth is an

attractive and mysterious subject. Koksma’s Theorem assures that the

sequence (αn) (n = 0, 1, . . .) is uniformly distributed modulo 1 for almost

all α > 1. See [6]. To find an example of such α has been an open problem

for a long time. In [7], M. B. Levin constructed an α > 1 with more strong

distribution properties. His method gives us a way to approximate such α

step by step. (See also [4, pp. 118–130].) However, no ‘concrete’ examples

of such α are known to date. For instance, it is still an open problem

whether (en) and ((3/2)n) are dense or not in R/Z (c.f. Beukers [2]).

On the other hand, one can easily construct α > 1 that (αn) is not

uniformly distributed modulo 1. A Pisot number gives us such an example.

We recall the definition of Pisot and Salem numbers. A Pisot number is
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a real algebraic integer greater than 1 whose conjugates other than itself

have modulus less than 1. A Salem number is a real algebraic integer

greater than 1 whose conjugates other than itself have modulus less than

or equal to 1 and at least one conjugate has modulus equal to 1. It is shown

that (αn) tends to 0 in R/Z when α is a Pisot number. If α is a Salem

number, (αn) is dense in R/Z but not uniformly distributed modulo 1. (See

[1, pp. 87–89].) Moreover, Salem numbers are the only known ‘concrete’

numbers whose powers are dense in R/Z.

In this short note, we will consider a quantitative problem:

How far is the sequence (αn) from the uniform

distribution for a Salem number α?

Let (an), n = 0, 1, . . . be a real sequence and I be an interval in [0, 1].

Define a counting function AN ((an), I) by the cardinality of n ∈ Z∩ [1, N ]

such that {an}, the fractional part of an, lie in I. We shall show

Theorem 1. Let α be a Salem number of degree greater than or equal

to 8. Then limN→∞
1
NAN ((αn), I) exists and satisfies

∣

∣

∣

∣

lim
N→∞

1

N
AN ((αn), I)− |I|

∣

∣

∣

∣

≤ 2ζ

(

degα− 2

4

)

(2π)1−
degα

2 |I|,

where ζ(s) is the Riemann zeta function, degα is the degree of α over Q

and |I| is the length of I.

Theorem 2. Let α be a Salem number of degree 4 or 6. Then

limN→∞
1
NAN ((αn), I) exists and satisfies

∣

∣

∣

∣

lim
N→∞

1

N
AN ((αn), I)− |I|

∣

∣

∣

∣

≤ 4π−
3
2

√

|I| for degα = 4,

and

∣

∣

∣

∣

lim
N→∞

1

N
AN ((αn), I)− |I|

∣

∣

∣

∣

≤ |I|
2π2

(

log
1

|I| + 1 + |I|
)

for degα = 6.

These theorems show that the sequence (αn) is quite ‘near’ to uni-

formly distributed sequences when the degree of a Salem number α is

large.
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2. Proof of Theorem 1

Let α be a Salem number of degree s. From the definition of Salem

numbers, s is an even integer not less than 4, whose conjugates are

α, α−1, α(1), . . . , α(s−2)

with complex α(j) of modulus 1 [1, p. 85]. Assume that α(j+r) = α(j) for

j = 1, . . . , r with r = s−2
2 . Put

α(j) = exp(2πiθj) (0 < θj < 1) (1)

for 1 ≤ j ≤ r.

Lemma 1. Let θj be the numbers defined by (1). Then 1, θ1, . . . , θr
are linearly independent over Q.

Proof. See for example [1, pp. 88–89]. ¤

From this lemma, {(mθ1,mθ2, . . . ,mθr)}∞m=1 is uniformly distributed

mod Zr. Hence for any Riemannian integrable function f(x) on (R/Z)r,

the limit

lim
N→∞

1

N

N
∑

m=1

f(mθ1, . . . ,mθr)

exists and is equal to
∫

(R/Z)r
f(x1, . . . , xr)dx1 · · ·xr.

Let I = [a, b] be an interval in [0, 1] and χ
I
the characteristic function

of I. We extend χI as a periodic function on R by a period 1. Since

AN ((αn), I) =
∑N

m=1 χI (α
m) and

αm + α−m + 2
r
∑

j=1

cos(2πmθj) ∈ Z,

we study the limit of

SN (α, I) :=
1

N

N
∑

m=1

χ
I

(

−α−m − 2
r
∑

j=1

cos(2πmθj)
)

(2)

as N →∞.
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For that purpose, we recall the Selberg polynomial which approximates

the characteristic function of an interval. Let ∆K(x) be the Fejér’s kernel

defined by

∆K(x) = 1 +
∑

|k|≤K
k 6=0

(

1− |k|
K

)

e2πikx,

and VK(x) be the Vaaler’s polynomial:

VK(x) =
1

K + 1

K
∑

k=1

f
( k

K + 1

)

sin(2πkx)

where f(u) = −(1−u) cot(πu)− 1
π . It is clear that for any η (0 < η ≤ 1/2),

|f(u)| ≤















πη

sinπη

1

πu
+

1

π
for 0 < u ≤ η

1− η

sinπ(1− η)
+

1

π
for η < u < 1.

(3)

Furthermore let BK(x) denote the Beurling polynomial:

BK(x) = VK(x) +
1

2(K + 1)
∆K+1(x). (4)

Take an interval J = [a, b] in [0, 1]. Then Selberg polynomials for the

interval J are

S+
K(x) = b− a+BK(x− b) +BK(a− x) (5)

and

S−K(x) = b− a−BK(b− x)−BK(x− a). (6)

These functions S±K(x) are trigonometric polynomials of degree at most K

and satisfy

S−K(x) ≤ χ
J
(x) ≤ S+

K(x). (7)

See [8] for further properties of Selberg polynomials.
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Lemma 2. Let k be a positive integer. Then we have

|J0(2πk)| ≤
1

π
√
2k
. (8)

Proof. Let H
(j)
ν (z) (j = 1, 2) be the Hankel functions. Asymptotic

expansions of H
(j)
ν (z) are given by

H(1)
ν (z) =

(

2

πz

)
1
2

ei(z−
νπ

2
−π

4
)

{

p−1
∑

m=0

(−1)m(ν,m)

(2iz)m
+R(1)

p (z)

}

and

H(2)
ν (z) =

(

2

πz

)
1
2

e−i(z−
νπ

2
−π

4
)

{

p−1
∑

m=0

(ν,m)

(2iz)m
+R(2)

p (z)

}

,

where (ν,m) = (4ν2−1)(4ν2−32)···(4ν2−(2m−1)2)
22mm!

, (ν, 0) = 1 and R
(j)
p (z) (j =

1, 2) are remainder terms ([9, pp. 197–198]). Taking ν = 0, p = 2, we get

Jν(z) =
1

2

(

H(1)
ν (2πk) +H(2)

ν (2πk)
)

=

(

2

πz

)
1
2
{

cos
(

z− π

4

)

+
1

8z
sin
(

z− π

4

)

+
1

2

(

R
(1)
2 (z)+R

(2)
2 (z)

)

}

.

It is easily seen that for j = 1, 2

|R(j)
2 (z)| ≤ 9

128z2
for z > 0

(see the integral representation of R
(j)
p (z) in [9, p. 197]). Hence

J0(2πk) =
1

π
√
k

(

1√
2
− 1

16
√
2πk

+R

)

with

|R| ≤ 1

2

(

|R(1)
2 (2πk)|+ |R(2)

2 (2πk)|
)

≤ 9

512π2k2

≤ 1

16
√
2πk

,

we get the assertion of the lemma. ¤
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Lemma 3. Take a and b in [0, 1] with a < b and let J = (a, b), [a, b],

(a, b] or [a, b). Let r be an integer not less than 3. Then we have

∣

∣

∣

∣

∣

∣

∫

(R/Z)r
χ
J

(

−2
r
∑

j=1

cos(2πxj)
)

dx1 · · · dxr − |J |

∣

∣

∣

∣

∣

∣

≤ 2ζ
(r

2

)

(2π)−r|J |. (9)

Proof. Hereafter we write z = 2
∑r

j=1 cos(2πxj) and W = (R/Z)r

for simplicity. By (7), we evaluate the integrals:

∫

W

{

BK(∓(z + b)) +BK(±(z + a))
}

dx1 · · · dxr. (10)

Substituting (4), the definition of BK(x), and using the integral formula

∫

W
e±2πik(z+a)dx1 · · · dxr = e±2πika

(

∫ 1

0
e4πik cos 2πxdx

)r

= e±2πikaJ0(4πk)
r,

(see [5, p. 81]), we have

∫

W
BK(z + a)dx1 · · · dxr =

∫

W

{

VK(z + a) +
∆K+1(z + a)

2(K + 1)

}

dx1 · · · dxr

=
1

K + 1

K
∑

k=1

f

(

k

K + 1

)

sin(2πka)J0(4πk)
r

+
1

2(K + 1)















1 +
∑

|k|≤K+1
k 6=0

(

1− |k|
K + 1

)

e2πikaJ0(4πk)
r















. (11)

From (8) the absolute value of the last term on the right hand side of (11)

is estimated as

≤ 1

2(K + 1)

{

1 + 2(2π)−r
K+1
∑

k=1

(

1− k

K + 1

)

k−r/2
}

≤ 1

2(K + 1)

{

1 + 2(2π)−rζ
(r

2

)}

≤ 1

K
.
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Hence the integral of BK(z + a) is given by

∫

W
BK(z + a)dx1 · · · dxr

=
1

K + 1

K
∑

k=1

f

(

k

K + 1

)

sin(2πka)J0(4πk)
r +G1(a)

with the bound |G1(a)| ≤ 1
K . The integral of BK(−z − b) is given in the

same way,

∫

W
BK(−z − b)dx1 · · · dxr

= − 1

K + 1

K
∑

k=1

f

(

k

K + 1

)

sin(2πkb)J0(4πk)
r +G2(b)

with the same upper bound |G2(b)| ≤ 1
K . Adding the above expressions

we have
∣

∣

∣

∣

∫

W

{

BK(−z − b) +BK(z + a)
}

dx1 · · · dxr
∣

∣

∣

∣

≤
∣

∣

∣

∣

1

K + 1

K
∑

k=1

f
( k

K + 1

)

(sin 2πka− sin 2πkb)J0(4πk)
r

∣

∣

∣

∣

+
2

K

≤ 2

K + 1

K
∑

k=1

∣

∣

∣
f
( k

K + 1

)∣

∣

∣
| sinπk(a− b)|(2π)−rk− r

2 +
2

K

≤ (2π)1−r

K + 1
(b− a)

K
∑

k=1

∣

∣

∣
f
( k

K + 1

)∣

∣

∣
k1− r

2 +
2

K
.

Now we estimate the sum in the above equation. Let ε be a small

positive number, and take η < 1
2 to be a small positive number which

satisfies πη
sinπη < 1+ ε. Dividing the sum into two parts at

[

η(K +1)
]

and

using (3), we have

1

K + 1

K
∑

k=1

∣

∣

∣
f
( k

K + 1

)
∣

∣

∣
k1− r

2 ≤ 1

K + 1

[η(K+1)]
∑

k=1

(

πη

sinπη

K + 1

πk
+

1

π

)

k1− r

2
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+
1

K +1

(

1− η
sinπ(1− η) +

1

π

) K
∑

k=[η(K+1)]+1

k1− r

2

≤ 1

π
(1 + ε)ζ

(r

2

)

+O

(

1√
K

)

,

where the implied constant in the last equation does not depend on K.

Therefore
∣

∣

∣

∣

∫

W

{

BK(−z − b) +BK(z + a)
}

dx1 · · · dxr
∣

∣

∣

∣

≤ 2(2π)−r(b− a)(1 + ε)ζ
(r

2

)

+O

(

1√
K

)

.

In the same manner we have
∣

∣

∣

∣

∫

W

{

BK(z + b) +BK(−z − a)
}

dx1 · · · dxr
∣

∣

∣

∣

≤ 2(2π)−r(b− a)(1 + ε)ζ
(r

2

)

+O

(

1√
K

)

.

Thus from (5), (6) and (7) we get the upper bound of the left hand

side of (9):
∣

∣

∣

∣

∫

W
χ
J

(

−2
r
∑

j=1

cos(2πxj)
)

dx1 · · · dxr − |J |
∣

∣

∣

∣

≤ 2(1 + ε)ζ
(r

2

)

(2π)−r|J |+O

(

1√
K

)

.

Now we letK →∞, as ε is arbitrary, we get the assertion of the lemma. ¤

Proof of Theorem 1. Now we study limN→∞ SN (α, I) of (2). Let

(xn) and (yn) be real sequences with yn → 0. Then it is easily seen from [6],

Chapter 1, Theorem 7.3 that if (xn) has a continuous asymptotic density

function, then (xn+yn) also does and their density functions are the same.

Thus it is able to ignore the term α−m in (2).

Our task is to consider the integral:
∫

W
χ
I

(

−2
r
∑

j=1

cos(2πxj)
)

dx1 · · · dxr.

Applying (9) to the interval I, we get the assertion of Theorem 1. ¤
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3. Proof of Theorem 2

Let us follow the proof of Theorem 1 with r = 1, 2. In this case, we

have

Y :=

∣

∣

∣

∣

∫

W

{

BK(−z − b) +BK(z + a)
}

dx1 · · · dxr
∣

∣

∣

∣

=
2(2π)−r

K + 1

K
∑

k=1

∣

∣

∣
f
( k

K + 1

)
∣

∣

∣
| sinπk(a− b)|k−r/2 +O(K−1/2). (12)

Let ε be a small positive number and take a small positive η such that

πη/(sinπη)<1+ε and a large integer K such that 1/(b−a)<η(K+1)<K.

We also introduce another parameter 0 < v < 1 which is chosen later.

Divide the summation in (12) into three parts

2(2π)−r

K + 1







∑

k≤ v

b−a

+
∑

v

b−a
<k≤η(K+1)

+
∑

η(K+1)<k≤K







=: S1 + S2 + S3.

If b− a ≤ v, using | sinπk(b− a)| ≤ πk(b− a) and (3), we get

S1 ≤



















(1 + ε)(b− a)

π

(

2

√

v

b− a
− 1

)

+O

(

1

K

)

r = 1,

(1 + ε)(b− a)

2π2

(

log
v

b− a
+ 1

)

+O

(

1

K

)

r = 2,

while if b − a > v, S1 is trivially zero. If b − a ≤ v, the trivial bound

| sinπk(b− a)| ≤ 1 implies, for r = 1, 2,

S2 ≤
4(1 + ε)

(2π)r+1

(

b− a

v

)
r

2
(

2

r
+
b− a

v

)

+O(K−1/2),

while if b− a > v,

S2 ≤
4(1 + ε)

(2π)r+1
ζ
(

1 +
r

2

)

+O(K−1/2).

Finally we have S3 = O(K−1/2) for r = 1, 2. The implied constants do not

depend on K. Now we let K →∞.
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In the case r = 1 we get

Y ≤



















(1 + ε)
√
b− a

π

{

2

(√
v +

1

π
√
v

)

−
√
b− a+

b− a

πv
3
2

}

b− a ≤ v,

1 + ε

π2
ζ

(

3

2

)

b− a > v.

Taking v = 1/π, it follows that

Y ≤ 4π−
3
2 (1 + ε)

√
b− a.

For r = 2, we have

Y ≤











(1 + ε)(b− a)

2π2

(

log
1

b− a
+ 1 +

1

πv
+ log v +

b− a

πv2

)

b− a ≤ v,

1 + ε

2π3
ζ(2) b− a > v.

Now taking v = 1/
√
π, we get

Y ≤ (1 + ε)(b− a)

2π2

(

log
1

b− a
+ 1 + (b− a)

)

.

The same estimates are valid for
∫

W

{

BK(z + b) +BK(−z − a)
}

dx1 · · · dxr

with r = 1, 2. Since ε is chosen arbitrarily, we obtain Theorem 2.
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4. Examples

To illustrate the result, we give examples of distributions for Salem

numbers of degree 4, 6 and 8. The interval [0, 1] is divided into 100 pieces.

We computed the fractional part of αn for 1 ≤ n ≤ 200000, and counted

the number of n so that the fractional part of αn falls into each subintervals.

The vertical axis indicates the number of such n.

0.2 0.4 0.6 0.8 1

2000

4000

6000

8000

10000

Figure 1. Salem number for x4 − x3 − x2 − x+ 1 = 0

0.2 0.4 0.6 0.8 1

1000

2000

3000

4000

Figure 2. Salem number for x6 − x5 − x4 + x3 − x2 − x+ 1 = 0
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0.2 0.4 0.6 0.8 1

1000

2000

3000

4000

Figure 3. Salem number for x8 − 2x7 + x6 − x4 + x2 − 2x+ 1 = 0
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