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Salem numbers and uniform distribution modulo 1

By SHIGEKI AKIYAMA (Niigata) and YOSHIO TANIGAWA (Nagoya)

Abstract. For a Salem number « of degree d, the distridution of fractional
parts of @"(n =1,2,...) is studied. By giving explicit inequalities, it is shown to
be ‘exponentially’ close to uniform distribution when d is large.

1. Introduction

Uniform distribution of sequences of exponential order growth is an
attractive and mysterious subject. Koksma’s Theorem assures that the
sequence (a™) (n =0,1,...) is uniformly distributed modulo 1 for almost
all @ > 1. See [6]. To find an example of such « has been an open problem
for along time. In [7], M. B. LEVIN constructed an o > 1 with more strong
distribution properties. His method gives us a way to approximate such «
step by step. (See also [4, pp. 118-130].) However, no ‘concrete’ examples
of such a are known to date. For instance, it is still an open problem
whether (e™) and ((3/2)") are dense or not in R/Z (c.f. BEUKERS [2]).

On the other hand, one can easily construct a > 1 that (a™) is not
uniformly distributed modulo 1. A Pisot number gives us such an example.
We recall the definition of Pisot and Salem numbers. A Pisot number is
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a real algebraic integer greater than 1 whose conjugates other than itself
have modulus less than 1. A Salem number is a real algebraic integer
greater than 1 whose conjugates other than itself have modulus less than
or equal to 1 and at least one conjugate has modulus equal to 1. It is shown
that (a”) tends to 0 in R/Z when « is a Pisot number. If « is a Salem
number, (a™) is dense in R/Z but not uniformly distributed modulo 1. (See
[1, pp. 87-89].) Moreover, Salem numbers are the only known ‘concrete’
numbers whose powers are dense in R/Z.
In this short note, we will consider a quantitative problem:

How far is the sequence (™) from the uniform
distribution for a Salem number o?

Let (an), n=0,1,... be a real sequence and I be an interval in [0, 1].
Define a counting function Ay ((ay),I) by the cardinality of n € ZN[1, N]
such that {a,}, the fractional part of a,, lie in I. We shall show

Theorem 1. Let « be a Salem number of degree greater than or equal

to 8. Then limy_.oc 5 An((a™), ) exists and satisfies

1 d - 2 eg o«
Jim Ay (@), 1) - m] <2 (%E=) em

where ((s) is the Riemann zeta function, deg « is the degree of a over Q
and |I| is the length of I.

Theorem 2. Let o be a Salem number of degree 4 or 6. Then

limy oo = AN((a™),]) exists and satisfies

1
lim NAN((a”),I) - ]I|‘ < 47r_%\/]_f| for dega =4,

‘N—MX)

and

.1 || 1
‘]\}Enoo NAN((a"),I) - \I‘ < 93 (log Il +14 |I|> for dega = 6.

These theorems show that the sequence (™) is quite ‘near’ to uni-
formly distributed sequences when the degree of a Salem number « is
large.
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2. Proof of Theorem 1

Let a be a Salem number of degree s. From the definition of Salem
numbers, s is an even integer not less than 4, whose conjugates are

a,a o ,a(S_Q)

with complex o9) of modulus 1 [1, p. 85]. Assume that a0+ = o) for

jzl,...,rwithr:%. Put

o) = exp(2rmif;)  (0<6; <1) (1)
for1 <j<r.

Lemma 1. Let 6; be the numbers defined by (1). Then 1,6y,...,6,
are linearly independent over Q.

PROOF. See for example [1, pp. 88-89]. O

From this lemma, {(mf;, mbs,...,mb,)}>°_; is uniformly distributed

mod Z". Hence for any Riemannian integrable function f(z) on (R/Z)",
the limit

N
. 1
ngnOONW;f<mel,...,m9r>

exists and is equal to

/ flz1, ... xp)dey -z
R/Z)"

Let I = [a,b] be an interval in [0, 1] and x, the characteristic function
of I. We extend y; as a periodic function on R by a period 1. Since

An((a™), 1) =3 _; x;(@™) and

s
a™+a "+ 2 Z cos(2mméb;) € Z,
j=1
we study the limit of

N r
Sn(a,I) = % 2 X, (—a_m -2 ECOS(QTWTL@J')) (2)

m=1 j=1

as N — oo.



332 Sh. Akiyama and Y. Tanigawa

For that purpose, we recall the Selberg polynomial which approximates
the characteristic function of an interval. Let Ag(z) be the Fejér’s kernel
defined by

k )
Ag(z) =1+ Z <1—%> e*mihe,

|k|<K
k20

and Vi (x) be the Vaaler’s polynomial:

K
Vi (z) = K;—l—l ;‘f(KL—i—l) sin(2mkx)

where f(u) = —(1—u) cot(mu)— 2. It is clear that for any n (0 < n < 1/2),

1 1
_m] — = for0<u<n
sinny Tu W

VOTER S ®)
——+— forp<u<l.
sinm(l—n)
Furthermore let By (x) denote the Beurling polynomial:
Bie(a) = Vie(w) + 5o Ak (a) (@
K\Z) = VKX 2(K+1) K+1(Z).

Take an interval J = [a,b] in [0, 1]. Then Selberg polynomials for the
interval J are

St(z) =b—a+ Bg(z —b) + Bg(a — ) (5)
and
Si(x) =b—a— Bg(b—x)— Bg(x —a). (6)

These functions Sli((x) are trigonometric polynomials of degree at most K
and satisfy

Sk(@) < x, (@) < Sk (2). (7)

See [8] for further properties of Selberg polynomials.
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Lemma 2. Let k be a positive integer. Then we have

| Jo(2k)| <

1
. 8
mV 2k ®)
PROOF. Let Hl(,j)(z) ( = 1,2) be the Hankel functions. Asymptotic

expansions of ngj )(z) are given by

1 p—1 miy m
HY(2) = <%> G D) {%% + R;(})(Z)}

and
—1

1 P
2 2 o vm_m (V m)
H? () = [ 2 i(z—5—7) AT (2)
> (%) <7r2> ‘ {mzzo (2iz)m T (Z)} ’

where (v,m) = (41,2,1)(4y27322;;§?y2,(2m71)2)’ (v,0) = 1 and Rl()j)(z) (G =

1,2) are remainder terms ([9, pp. 197-198]). Taking v = 0, p = 2, we get

T (2) = % (S (2nk) + B (2rh))

(2) {3 (0 )}

It is easily seen that for j = 1,2

IRY)(2)| < for z > 0

9
12822

(see the integral representation of Rl(,j )(z) in [9, p. 197]). Hence

1 1 1
J0(27T/€) = W—\/E <ﬁ - —16\/§7rk + R)

with
R <1 (1B 2k + 1B (2] ) < _9
— 9 \"72 2 = 51272k2
1
< -
~16v2rk’

we get the assertion of the lemma. O
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Lemma 3. Take a and b in [0,1] with a < b and let J = (a,b), [a, b],
(a,b] or [a,b). Let r be an integer not less than 3. Then we have

/(R/Z)TXJ (_2i605(2ﬂxj)>d$1-~dmr — ]| < 2C<g)(27r)_r|J|, 9)

j=1

PROOF. Hereafter we write z = 27, cos(27z;) and W = (R/Z)"
for simplicity. By (7), we evaluate the integrals:

/W{BK(:F(Z+b))JFBK(ZE(ZJFG))}dl‘lu-dng, (10)

Substituting (4), the definition of Bx (z), and using the integral formula

1
/ €:|:27rik(z+a)d$1 coodx, = e t2mika (/ ek cos 27md£[))T
w 0
_ eiQWikaJ()(Zlﬂ'ki)r,

(see [5, p. 81]), we have

_ Agt1(z +a)
/WBK(Z+a)d951"'d$r—/W{VK(Z—HL)-I— 2K 1 1) dxy---dx,

1 & ko .
= %1 Z f <K——|—1> sin(2mka)Jo(47k)

k=1
P S S > . e*mRa I (4mk)" 3 . (11)
2(K +1) K+1
|k|<K+1
k#0

From (8) the absolute value of the last term on the right hand side of (11)
is estimated as
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Hence the integral of B (z + a) is given by

/ Bi(z + a)dxy - - - dx,
w

=% ;f (KLJFJ sin(27mka) Jo(47k)" + G1(a)

with the bound |G1(a)| < %. The integral of By (—z — b) is given in the
same way,

/ Br(—z —b)dxy - - - dx,
w

K
- _K;-i-l Z f (KL—i—l> sin(27kb) Jo(4mk)" 4+ Go(b)
k=1

with the same upper bound |G2(b)| < &. Adding the above expressions
we have

’/W{BK(_Z —b) + Br(z+ a)}dggl o day

f

1

k=
<2 i(f(L)Msimk(a—b)sz)TkS+3

)(sin 2nka — sin 2wkb) Jo(4mk)" | +

<K+1

K+14=\K+1 K
K
(2m)t-r ‘ k ‘1_; 2
< — S =
S U a>Zf(K+1)k T K

k=1

Now we estimate the sum in the above equation. Let € be a small
positive number, and take n < % to be a small positive number which
satisfies Siﬂm < 1+e. Dividing the sum into two parts at [n(K +1)] and
using (3), we have

;ZKI‘J( k )‘kl—ég 1 [n(K+1)]< ™ K+1+l>k1—§
k=1

sinmtn wk s
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1 1-1n 1 K
il k=3
+K+1 (sinw(l—n)+7r> Z i

k=[n(K+1)]+1

< tarex(p)+o (\/1—?> ,

where the implied constant in the last equation does not depend on K.

Therefore

’/W{BK(_Z —b) + Bg(z + a)}da;1 e dy

< 2(2m) " (b — a)(1 + a)((g) +0 <
In the same manner we have

‘/W{BK(Z 4+ b) + Br(—2 — a)}dxl do,

i)

<2(21) 7" (b — a)(1 + )¢ (g) +O (\%) .

Thus from (5), (6) and (7) we get the upper bound of the left hand
side of (9):

'/ X, 22(}05277:@))(13}1 r—|J|‘

<a(1+)¢ (3) @)1 +0 <\/1_E> |

Now we let K — o0, as ¢ is arbitrary, we get the assertion of the lemma. [J

PROOF OF THEOREM 1. Now we study limy_oo Sn (e, I) of (2). Let
(z5,) and (yy,,) be real sequences with ¢, — 0. Then it is easily seen from [6],
Chapter 1, Theorem 7.3 that if (x,) has a continuous asymptotic density
function, then (x, +y;,) also does and their density functions are the same.
Thus it is able to ignore the term o™ in (2).

Our task is to consider the integral:

/W X; (—2 ; cos(27r:cj)> dzy - - - dz,

Applying (9) to the interval I, we get the assertion of Theorem 1. O
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3. Proof of Theorem 2

Let us follow the proof of Theorem 1 with r = 1,2. In this case, we
have

Y = ‘/W{BK(—Z —b)+ Bg(z+ a)}dazl e dxy

202w
K +1

i’f(KLHM |sinwh(a — )k~ + O(K™1/?). (12)
k=1

Let € be a small positive number and take a small positive 1 such that
71/ (sin mn)<l+e and a large integer K such that 1/(b—a) <n(K+1) < K.
We also introduce another parameter 0 < v < 1 which is chosen later.
Divide the summation in (12) into three parts

21((27_?? > > + Y =51 + S5 + Ss.

k<pls  pla<k<n(K+1)  n(K+1)<k<K

If b —a < v, using |sin7k(b—a)| < 7k(b— a) and (3), we get
(I4+¢e)(b—a) v 1 B
2 A 1)+0 I r=1,
) a

(I4+¢e)(b—a) v 1 B
52 logb_a—i-l +0 I r=2,

while if b —a > v, 57 is trivially zero. If b — a < v, the trivial bound
|sink(b —a)| <1 implies, for r = 1,2,

41+¢) (b—a\2 (2 b-a _1/2
< — K
SQ—@w)rH( v ) (ﬁ v )+O< ’

while if b —a > v,

4(1+¢)

<7
52 < (2m)r+1

¢ (1 + g) +O(K™1/2),

Finally we have S3 = O(K -1/ 2) for r = 1, 2. The implied constants do not
depend on K. Now we let K — oc.
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In the case r = 1 we get
(I+e)vb—a 1 b—a
A S P ) Vh—a+ 2 b—a<
™ ﬁ+7r\/5 at — “=v

1+¢ 3
2 C<§) b—a>w.

Taking v = 1/, it follows that

Y < 47r_%(1 +e)Vb —a.

For r» = 2, we have

1 b— 1 1 b—
( +€)(2 a) <10g +1+_+10g1}+ 2@) b—aSv,
Y < - 2 b—a m m
6c(2) b—a>w.
273

Now taking v = 1/+/7, we get

e 00 o 1

272 —a

+14(b— a)) :
The same estimates are valid for
/ {BK(Z +0b)+ Br(—2z — a)}datl -odx,
w

with r = 1,2. Since ¢ is chosen arbitrarily, we obtain Theorem 2.
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4. Examples

To illustrate the result, we give examples of distributions for Salem
numbers of degree 4, 6 and 8. The interval [0, 1] is divided into 100 pieces.
We computed the fractional part of o™ for 1 < n < 200000, and counted
the number of n so that the fractional part of o' falls into each subintervals.
The vertical axis indicates the number of such n.
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Figure 1. Salem number for 2% — 2% — 22 —2+1=0
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Figure 2. Salem number for 26 — 2% — 2% + 23 —22 —2+1=0
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Figure 3. Salem number for 28 — 22" + 25 — 2%+ 22 - 22 +1=0
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