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Characterizing left centralizers by their action
on a polynomial

By DOMINIK BENKOVIČ (Maribor) and DANIEL EREMITA (Maribor)

Abstract. On algebras satisfying certain d-freeness condition we charac-
terize left centralizers by their action on a fixed polynomial in noncommuting
variables. The case of the polynomial Xn is studied in a greater detail.

1. Introduction

An additive map ϕ from a ring R into itself is called a left centralizer
if ϕ (xy) = ϕ (x) y for all x, y ∈ R. If R has a unity 1 then taking x = 1
we see that the left multiplications y 7→ ay are the only left centralizers
on R. In the non-unital case there are often other examples.

In [9] Zalar showed that on a 2-torsionfree semiprime ring R every
additive map ϕ satisfying ϕ

(
x2

)
= ϕ (x) x, x ∈ R, is already a left central-

izer. Molnár [7] obtained the same conclusion under the slightly milder
assumption that ϕ

(
x3

)
= ϕ (x) x2, x ∈ R, in a semisimple H∗-algebra R.

Molnar also mentioned that according to the formulation of his theorem
this problem should be studied in a purely ring theoretical context. These
results of Zalar and Molnár were motivated by the problem of representing
quadratic forms by bilinear forms.

It is our aim in this paper to consider a considerably more general
condition where an additive map acts as a left centralizer on an arbitrary
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multilinear polynomial in noncommuting indeterminates. In particular,
we shall see that an additive map ϕ : R → R satisfying ϕ(xn) = ϕ(x)xn−1,
x ∈ R, where n ≥ 2 is an arbitrary fixed integer and R is a prime ring
with char(R) = 0 or char(R) ≥ n, is a left centralizer.

Our results are obtained as applications of the theory of functional
identities. In particular we shall use some ideas from the paper of Beidar

and Fong [3] where bijective additive maps preserving a fixed polynomial
are characterized.

2. Preliminaries

The theory of functional identities considers set-theoretic maps on
rings that satisfy some identical relations. When treating such relations
one usually concludes that the form of the maps involved can be described,
unless the ring is very special. We refer the reader to [5] for an introductory
account on functional identities.

Let R be a ring and let S be a nonempty subset of R. The concept of
d-freeness of S, introduced in [2], will play an important role in this paper
(here d is a positive integer). We omit stating the exact definition since it
will not be used in its full generality. Instead we just point out a special
property satisfied by d-free sets: If F1, F2, . . . , Fd are arbitrary maps from
Sd = S × S × . . .× S to R and S is a d-free subset of R, then

d∑

i=1

Fi(x1 . . . , xi−1, xi+1, . . . , xd)xi = 0 for all x1, . . . , xd ∈ S

=⇒ F1 = F2 = · · · = Fd = 0.

(1)

In fact, in our main theorem (Theorem 3.2) we could replace the assump-
tion on d-freeness by this condition which is actually weaker (cf. [6]).

Under some natural assumptions one can show that various subsets
(such as ideals, Lie ideals, the sets of symmetric or skew elements in a ring
with involution) of certain types of rings are d-free. We refer the reader to
[1], [2] for results of this kind, which of course also show in which concrete
situations Theorem 3.2 is applicable. Let us mention specifically only one
result that we shall really need: A prime ring R is a d-free subset of its
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maximal right ring of quotients, unless R satisfies the standard polynomial
identity of degree less than 2d [2, Theorem 2.4]. So, in particular such
ring R satisfies (1) with S = R and Fi : Rd → R. Using this fact we can
now easily establish the following result (which will be in this paper in fact
used only in the PI case).

Lemma 2.1. Let R be a prime ring and let F : R → R be an additive

map. If there exists a positive integer n such that F (x)xn = 0 for all

x ∈ R, then F = 0.

Proof. Suppose first that R is not a PI ring. A complete lineariza-
tion of F (x)xn = 0 gives

∑
π∈Sn+1

F (xπ(1))xπ(2) . . . xπ(n+1) = 0 for all
x1, . . . , xn+1 ∈ R. Applying (1) successively it follows easily that F = 0.

So assume that R is PI. As it is well-known, then R has a nonzero
center [8]. Let c be a nonzero central element. Since c is not a zero
divisor, F (c)cn = 0 implies F (c) = 0. Accordingly, for any x ∈ R we have
0 = F (x+c)(x+c)n = F (x)(x+c)n, and hence also F (x)(x+c)nxn−1 = 0.
Since F (x)xn = 0 this identity reduces to F (x)cnxn−1 = 0, and therefore
F (x)xn−1 = 0 for every x ∈ R. Repeating this argument we get F = 0. ¤

3. The results

It is more convenient to state our first results in the setting of algebras
over commutative rings. So let Φ be a commutative ring with unity, and
let A be an algebra over Φ. Further, let n ≥ 2 and let

p(X1, X2, . . . , Xn) =
∑

π∈Sn

απXπ(1)Xπ(2) . . . Xπ(n), απ ∈ Φ, αe = 1

be a fixed multilinear polynomial in noncommuting indeterminates Xi

over Φ. Further, let L be a subset of A closed under p, i.e. p(xn) ∈ L
for all x1, . . . , xn ∈ L, where xn = (x1, x2, . . . , xn). We shall consider a
map ϕ : L → A satisfying

ϕ (p (xn)) =
∑

π∈Sn

απϕ
(
xπ(1)

)
xπ(2) . . . xπ(n) (2)
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for all x1, . . . , xn ∈ L. Of course, every left centralizer satisfies (2). Our
goal is to show that under certain assumptions these are in fact the only
maps with this property. In the first and crucial step of the proof we
derive a functional identity from (2). It should be mentioned that the idea
of considering the expression [p(xn), p(yn)] in its proof is taken from [3].

Lemma 3.1. Let L be a Lie subalgebra of A closed under p. If

ϕ : L → A is an additive map satisfying (2) then

∑

π∈Sn

∑

σ∈Sn

απασF
(
xπ(1), yσ(1)

) [
xπ(2) . . . xπ(n), yσ(2) . . . yσ(n)

]
= 0 (3)

for all xn, yn ∈ Ln, where F (x, y) = ϕ ([x, y])− ϕ (x) y + ϕ (y) x.

Proof. Note that for any a ∈ A and xn ∈ Ln we have

[p(xn), a] =
n∑

i=1

p(x1, . . . , xi−1, [xi, a], xi+1, . . . , xn).

Accordingly, by (2) we see that when expanding

ϕ ([p(xn), a]) =
n∑

i=1

ϕ (p(x1, . . . , xi−1, [xi, a], xi+1, . . . , xn))

we obtain n · n! summands, where those corresponding to π ∈ Sn are

απ

(
ϕ([xπ(1), a])xπ(2) . . . xπ(n) + ϕ(xπ(1))[xπ(2), a]xπ(3) . . . xπ(n)

+ · · ·+ ϕ(xπ(1))xπ(2) . . . xπ(n−1)[xπ(n), a]
)

= απ

(
ϕ([xπ(1), a])xπ(2) . . . xπ(n) + ϕ(xπ(1))[xπ(2) . . . xπ(n), a]

)
.

Therefore

ϕ ([p (xn) , a]) =
∑

π∈Sn

απϕ
([

xπ(1), a
])

xπ(2) . . . xπ(n)

+
∑

π∈Sn

απϕ
(
xπ(1)

) [
xπ(2) . . . xπ(n), a

]
.
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In particular

ϕ ([p (xn) , p (yn)]) =
∑

π∈Sn

απϕ
([

xπ(1), p (yn)
])

xπ(2) . . . xπ(n)

+
∑

π∈Sn

απϕ
(
xπ(1)

) [
xπ(2) . . . xπ(n), p (yn)

] (4)

and

ϕ
([

xπ(1), p (yn)
])

= −ϕ([p(yn), xπ(1)])

=
∑

σ∈Sn

ασϕ
([

xπ(1), yσ(1)

])
yσ(2) . . . yσ(n)

+
∑

σ∈Sn

ασϕ
(
yσ(1)

) [
xπ(1), yσ(2) . . . yσ(n)

]

for all xn, yn ∈ Ln. Using this together with
[
xπ(2) . . . xπ(n), p (yn)

]
=

∑

σ∈Sn

ασ

[
xπ(2) . . . xπ(n), yσ(1)yσ(2) . . . yσ(n)

]

in (4) we obtain

ϕ ([p (xn) , p (yn)])

=
∑

π∈Sn

∑

σ∈Sn

απασϕ
([

xπ(1), yσ(1)

])
yσ(2) . . . yσ(n)xπ(2) . . . xπ(n)

+
∑

π∈Sn

∑

σ∈Sn

απασϕ
(
yσ(1)

) [
xπ(1), yσ(2) . . . yσ(n)

]
xπ(2) . . . xπ(n)

+
∑

π∈Sn

∑

σ∈Sn

απασϕ
(
xπ(1)

) [
xπ(2) . . . xπ(n), yσ(1)yσ(2) . . . yσ(n)

]

(5)

for all xn, yn ∈ Ln. Since [p(xn), p(yn)] = −[p(yn), p(xn)], we see from (5)
(where for convenience we replace the roles of denotations π and σ) that
on the other hand

ϕ ([p (xn) , p (yn)])

=
∑

π∈Sn

∑

σ∈Sn

απασϕ
([

xπ(1), yσ(1)

])
xπ(2) . . . xπ(n)yσ(2) . . . yσ(n)
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+
∑

π∈Sn

∑

σ∈Sn

απασϕ
(
xπ(1)

) [
xπ(2) . . . xπ(n), yσ(1)

]
yσ(2)yσ(3) . . . yσ(n)

+
∑

π∈Sn

∑

σ∈Sn

απασϕ
(
yσ(1)

) [
xπ(1) . . . xπ(n), yσ(2) . . . yσ(n)

]
(6)

for all xn, yn ∈ Ln. Comparing (5) and (6) we obtain the conclusion of the
lemma. ¤

Theorem 3.2. Let L be a 2n-free Lie subalgebra of an algebra A

closed under p. If ϕ : L → A is an additive map satisfying (2) then

ϕ ([x, y]) = ϕ (x) y − ϕ (y) x for all x, y ∈ L. Moreover, if L = A is a

2-torsionfree algebra, then ϕ is a left centralizer.

Proof. Writing xn+i instead of yi in (3) we can express this identity
as

∑2n
i=1 Fi(x1 . . . , xi−1, xi+1, . . . , x2n)xi = 0 where, for instance,

F2n(x1, . . . , x2n−1) = F (x1, xn+1)x2 . . . xnxn+2 . . . x2n−1 + . . .

Therefore (cf. (1)) it follows that F1 = · · · = F2n = 0. Each identity Fi = 0
can be expressed in a way that (1) can be applied again. Repeating this
argument we finally arrive at F (x, y) = 0 for all x, y ∈ L, i.e. ϕ ([x, y]) =
ϕ (x) y − ϕ (y) x for all x, y ∈ L.

Now suppose that L = A is 2-torsionfree (i.e. 2a = 0 implies a = 0
in A). Set x◦y = xy+yx and note that [x, y ◦ z]+[y, z ◦ x]+[z, x ◦ y] = 0.
Therefore, by what we just proved it follows that

0 = ϕ ([x, y ◦ z] + [y, z ◦ x] + [z, x ◦ y])

= ϕ (x) (y ◦ z)− ϕ (y ◦ z) x + ϕ (y) (z ◦ x)

− ϕ (z ◦ x) y + ϕ (z) (x ◦ y)− ϕ (x ◦ y) z

= G(x, y)z + G(y, z)x + G(z, x)y,

where G(x, y) = ϕ (x) y+ϕ (y) x−ϕ (x ◦ y) for all x, y, z ∈ A. Since 2n > 3
it follows that G(x, y) = 0 for all x, y ∈ A. Therefore

2ϕ (xy) = ϕ ([x, y] + x ◦ y) = ϕ ([x, y]) + ϕ (x ◦ y) = 2ϕ (x) y

for all x, y ∈ A, proving that ϕ is a left centralizer. ¤
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Theorem 3.3. Let R be a prime ring and let ϕ : R → R be an

additive map satisfying ϕ (xn) = ϕ (x) xn−1 for all x ∈ R, where n ≥ 2 is a

fixed integer. If char (R) = 0 or char (R) ≥ n, then ϕ is a left centralizer.

Proof. The complete linearization of ϕ (xn) = ϕ (x) xn−1 gives us

ϕ

( ∑

π∈Sn

xπ(1)xπ(2) . . . xπ(n)

)
=

∑

π∈Sn

ϕ
(
xπ(1)

)
xπ(2) . . . xπ(n) (7)

for all xn ∈ Rn. Therefore, we can apply Theorem 3.2 (for the case when
απ = 1 for each π ∈ Sn and Φ = Z) and conclude that ϕ is indeed a left
centralizer unless R is a PI ring (satisfying the standard identity of degree
less than 4n, cf. Section 2).

So we may now assume that R is a PI ring and so it contains a nonzero
central element c. Picking any x ∈ R and setting x1 = · · · = xn−1 = cx

and xn = x in (7) we obtain

ϕ
(
n!cn−1xn

)
= (n− 1) (n− 1)!ϕ (cx) cn−2xn−1

+ (n− 1)!ϕ (x) cn−1xn−1.

On the other hand, setting x1 = · · · = xn−1 = c and xn = xn in (7) we get

ϕ
(
n!cn−1xn

)
= (n− 1) (n− 1)!ϕ (c) cn−2xn + (n− 1)!ϕ (xn) cn−1

= (n− 1) (n− 1)!ϕ (c) cn−2xn + (n− 1)!ϕ (x) xn−1cn−1.

Comparing these two identities we obtain

(n− 1) (n− 1)! (ϕ (cx)− ϕ (c) x) cn−2xn−1 = 0,

which clearly yields (ϕ (cx)− ϕ (c) x) xn−1 = 0. By Lemma 2.1 it follows
that ϕ (cx) = ϕ (c) x for all x ∈ R. Now setting x1 = · · · = xn−1 = x and
xn = c in (7) we get

(n− 1) (n− 1)!ϕ (x) cxn−2 + (n− 1)!ϕ (c) xn−1 = ϕ
(
n!cxn−1

)

= n!ϕ (c) xn−1

and hence
(n− 1) (n− 1)! (ϕ (x) c− ϕ (c) x) xn−2 = 0
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for all x ∈ R. Applying Lemma 2.1 again we see that ϕ (x) c = ϕ (c) x

for all x ∈ R. Accordingly, ϕ(xy)c = ϕ (c) xy = ϕ(x)cy = ϕ(x)yc which
implies that ϕ is a left centralizer. ¤

We remark that every left centralizer on a prime ring R is of the form
x 7→ qx for some q in the right Martindale ring of quotients of R [4,
Proposition 2.2.1 (iv)].

We conclude the paper by an example showing that some restrictions
concerning char(R) are really necessary in Theorem 3.3.

Example 3.4. Let R be a Galois field of order n = ps where p is prime
and s ≥ 2. Then xn−1 = 1 for every x 6= 0 in R, and so any additive
map ϕ satisfies ϕ (xn) = ϕ (x) xn−1 for all x ∈ R. However, not every
additive map on R is a left centralizer, i.e. is of the form x 7→ ax with
a ∈ R. Namely, there are only n left centralizers on R, while the number
of additive (i.e. Zp-linear) maps on R is equal to ns since R can be viewed
as an s-dimensional vector space over Zp.
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