
Publ. Math. Debrecen
64/3-4 (2004), 353–367

Approximation by some linear positive operators
in polynomial weighted spaces

By ZBIGNIEV WALCZAK (Poznań)

Abstract. We consider certain linear positive operators Ln in polynomial
weighted spaces of functions of one variable and study approximation properties
of these operators, including theorems on the degree of approximation.

1. Introduction

1.1. M. Becker in his paper [1] studied approximation problems for
functions f ∈ Cp and Szasz–Mirakyan operators

Sn(f ; x) := e−nx
∞∑

k=0

(nx)k

k!
f

(
k

n

)
,

x ∈ R0 := [0, +∞), n ∈ N := {1, 2, . . . } ,

(1)

where Cp with some fixed p ∈ N0 := {0, 1, 2, . . . } is a polynomial weighted
space generated by the weight function

w0(x) := 1, wp(x) := (1 + xp)−1, if p ≥ 1, (2)

i.e., Cp is the set of all real-valued functions f , continuous on R0 and such
that wpf is uniformly continuous and bounded on R0. The norm in Cp is
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defined by the formula

‖f‖p ≡ ‖f ( · ) ‖p := sup
x∈R0

wp(x) ‖f(x)‖. (3)

In [1] there were proved theorems on the degree of approximation
of f ∈ Cp by operators Sn defined by (1). From these theorems it was
deduced that

lim
n→∞Sn(f ; x) = f(x) (4)

for every f ∈ Cp, p ∈ N0 and x ∈ R0. Moreover, the convergence (4) is
uniform on every interval [x1, x2], x2 > x1 ≥ 0.

The Szasz–Mirakyan operators are important in approximation theory.
They have been studied intensively, and their connections with different
branches of analysis, such that as numerical analysis. Recently in many
papers were introduced various modifications of operators Sn. Approxi-
mation properties of modified Szasz–Mirakyan operators

Sq
n(f ; x) := e−nx

∞∑

k=0

(nx)k

k!
f

(
k

n + q

)

for x ∈ R0, n ∈ N , q > 0, in exponential weighted spaces were examined
in [3]. Their extensions can be found in, e.g., [4], [5].

The actual construction of the operator Sn and Sq
n requires estimation

of infinite series which in a certain sense restricts their usefulness from the
computational point of view. Thus the question arises, whether Sn, Sq

n and
their generalizations cannot be replaced by a finite sum. In connection with
this question we introduce the operators (8) Moreover, we shall prove that
the order of approximation of f ∈ Cp by Ln (defined by (8) is better that
(25) and (Ln(f)) converges uniformly to f on R0. This together with the
simple form of the operator makes the results, given in the present paper,
more helpful e.g. in numerical methods.

1.2. In this paper we introduce certain linear positive operators and
study their approximation properties. To this end, let Cp be the space
given above and let f ∈ C1

p := {f ∈ Cp : f ′ ∈ Cp}, where f ′ is the first
derivative of f . For f ∈ Cp we define the modulus of continuity ω1(f ; ·)
as usual ([2]) by the formula

ω1(f ; Cp; t) := sup
0≤h≤t

‖∆hf( · )‖p, t ∈ R0, (5)
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where ∆hf(x) := f(x+h)− f(x), for x, h ∈ R0. From the above it follows
that

lim
t→0+

ω1(f ;Cp; t) = 0, (6)

for every f ∈ Cp. Moreover, if f ∈ C1
p , then there exists M1 = const. > 0

such that
ω1(f ; Cp; t) ≤ M1 · t for t ∈ R0. (7)

1.3. We introduce the following

Definition. Let p ∈ N0 be a fixed number. For functions f ∈ Cp we
define the operators

Ln(f ; x) :=
1

(1 + (x + n−1)2)n

×
n∑

k=0

(
n

k

)
(x + n−1)2kf

(
k

n
· 1 + (x + n−1)2

x + n−1

)
,

(8)

x ∈ R0, n ∈ N . ¤

Similarly as Sn, the operator Ln is linear and positive. In §2 we shall
prove that Ln is an operator from the space Cp into Cp for every fixed
p ∈ N0.

For t ∈ R0 and n ∈ N

(1 + t2)n =
n∑

k=0

(
n

k

)
t2k. (9)

From (8) and (9) we derive the following formulas

Ln(1;x) = 1,

Ln(t; x) = x + n−1,

Ln(t2; x) = (x + n−1)2
[
1 +

n−1

(x + n−1)2

]
,

Ln(t3; x) = (x + n−1)3
[
1 +

3n−1 − n−2

(x + n−1)2
+

n−2

(x + n−1)4

]
,



356 Zbigniew Walczak

Ln(t4; x) = (x + n−1)4
[
1 +

6n−1 − 4n−2 + n−3

(x + n−1)2

+
7n−2 − 4n−3

(x + n−1)4
+

n−3

(x + n−1)6

]
, (10)

for all n ∈ N and x ∈ R0.

2. Main results

2.1. From formulas (8), (9) and Ln(tk; x), 1 ≤ k ≤ 4, given in the
above we obtain

Lemma 1. For all x ∈ R0 and n ∈ N we have

Ln(t− x; x) = n−1,

Ln((t− x)2; x) = n−2 + n−1,

Ln((t− x)3; x) = n−2

(
3− x +

1
x + n−1

)
,

Ln((t− x)4; x) = n−2

(
7− 4x

x + n−1
+

n−1

(x + n−1)2

+ n−1(x2 − 4x + 2) + n−2(2x− 3) + n−3

)
. ¤

Next we shall prove

Lemma 2. Let s ∈ N be a fixed number. Then there exist coefficients

αs,j(n), depending only on s, j, n and bounded with respect to n such that

Ln(ts;x) = (x + n−1)s
s∑

j=1

αs,j(n)
(x + n−1)2(j−1)

(11)

for all n ∈ N and x ∈ R0. Moreover, αs,1(n) = 1, αs,s(n) = n1−s and

αs,j(n) = O(1/nj−1) for j = 1, 2 . . . , s.



Approximation by some linear positive operators. . . 357

Proof. We shall use mathematical induction for s. The formula (11)
for 1 ≤ s ≤ 4 is given in above. Let (11) hold for f(x) = xj , 1 ≤ j ≤ s,
with fixed s ∈ N . We shall prove (11) for f(x) = xs+1. From (8) and (9)
it follows that

Ln(ts+1;x) =
x + n−1

n(1 + (x + n−1)2)n−1

×
n−1∑

j=0

(
n

j

)
(n− j)(x + n−1)2j

(
j + 1

n
· 1 + (x + n−1)2

x + n−1

)s

=
x + n−1

(1 + (x + n−1)2)n−1

×
n∑

j=0

(
n

j

)
(x + n−1)2j

(
j + 1

n
· 1 + (x + n−1)2

x + n−1

)s

− x + n−1

n(1 + (x + n−1)2)n−1

×
n∑

j=0

(
n

j

)
(x + n−1)2jj

(
j + 1

n
· 1 + (x + n−1)2

x + n−1

)s

=
x + n−1

(1 + (x + n−1)2)n−1

×
n∑

j=0

(
n

j

)
(x + n−1)2j

(
1 + (x + n−1)2

x + n−1

)s

n−s
s∑

µ=0

(
s

µ

)
jµ

− x + n−1

n(1 + (x + n−1)2)n−1

×
n∑

j=0

(
n

j

)
(x + n−1)2j

(
1 + (x + n−1)2

x + n−1

)s

n−s
s∑

µ=0

(
s

µ

)
jµ+1

= (x + n−1)(1 + (x + n−1)2)

×
s∑

µ=0

(
s

µ

)(
1 + (x + n−1)2

x + n−1

)s−µ

nµ−sLn(tµ; x)
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− (x + n−1)2Ln(ts+1;x)− (x + n−1)2

×
s−1∑

µ=0

(
s

µ

)(
1 + (x + n−1)2

x + n−1

)s−µ

nµ−sLn(tµ+1; x).

Consequently

Ln(ts+1;x) = (x + n−1)
s∑

µ=0

(
s

µ

)(
1 + (x + n−1)2

x + n−1

)s−µ

nµ−sLn(tµ; x)

− (x + n−1)
s−1∑

µ=0

(
s

µ

) (
1 + (x + n−1)2

x + n−1

)s−µ−1

nµ−sLn(tµ+1;x).

From these we obtain

Ln(ts+1;x) = (x + n−1)
(

1 + (x + n−1)2

x + n−1

)s

n−s

+ (x + n−1)
s∑

µ=1

(
s

µ

) (
1 + (x + n−1)2

x + n−1

)s−µ

nµ−sLn(tµ; x)

− (x + n−1)
s∑

µ=1

(
s

µ− 1

)(
1 + (x + n−1)2

x + n−1

)s−µ

nµ−s−1Ln(tµ; x).

By our assumption we get

Ln(ts+1; x) = (x + n−1)
(

1 + (x + n−1)2

x + n−1

)s

n−s

+ (x + n−1)
s∑

µ=1

{(
s

µ

)
nµ−s −

(
s

µ− 1

)
nµ−s−1

}(
1 + (x + n−1)2

x + n−1

)s−µ

× (x+n−1)µ
µ∑

j=1

αµ,j(n)
(x+n−1)2(j−1)

=(x + n−1)s+1

{(
1+(x + n−1)2

(x+n−1)2

)s

n−s

+
s∑

µ=1

µ∑

j=1

{(
s

µ

)
nµ−s −

(
s

µ− 1

)
nµ−s−1

}

×
(

1 + (x + n−1)2

(x + n−1)2

)s−µ
αµ,j(n)

(x + n−1)2(j−1)

}
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= (x + n−1)s+1

{(
1 + (x + n−1)2

(x + n−1)2

)s

n−s +
s∑

µ=1

µ∑

j=1

s−µ∑

k=0

(
s− µ

k

)

× (x + n−1)2(µ−s−j+k+1)

{(
s

µ

)
nµ−s −

(
s

µ− 1

)
nµ−s−1

}
αµ,j(n)

}
.

Since αs,1(n) = 1, αs,s(n) = n1−s and αs,j(n) = O(1/nj−1) for
j = 1, 2 . . . , s, we have for µ = 1, 2, . . . , s
{(

s

µ

)
nµ−s−

(
s

µ−1

)
nµ−s−1

}
αµ,j(n) = O(1/nj+s−µ−1), j=2, 3, . . . , µ,

s∑

µ=1

{(
s

µ

)
nµ−s −

(
s

µ− 1

)
nµ−s−1

}
αµ,1(n) = 1− n−s.

From the above and by elementary calculations we can write

s∑

µ=1

µ∑

j=1

s−µ∑

k=0

(
s− µ

k

)
(x + n−1)2(µ−s−j+k+1)

×
{(

s

µ

)
nµ−s−

(
s

µ− 1

)
nµ−s−1

}
αµ,j(n) = 1− n−s+

s∑

µ=2

βs,µ(n)
(x+n−1)2(µ−1)

,

where βs,µ(n) are coefficients depending only on s, µ, n and bounded with
respect to n and βs,µ(n) = O(1/nµ−1) for µ = 2, . . . , s. Consequently we
have

Ln(ts+1; x) = (x + n−1)s+1

{
s∑

µ=0

n−s

(x + n−1)2(s−µ)

+ 1− n−s +
s∑

µ=2

βs,µ(n)
(x + n−1)2(µ−1)

}

= (x + n−1)s+1

{
1 +

s∑

µ=2

n−s

(x + n−1)2(s−µ+1)

+
s∑

µ=2

βs,µ(n)
(x + n−1)2(µ−1)

+
n−s

(x + n−1)2s

}
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= (x + n−1)s+1
s+1∑

µ=1

αs+1,µ(n)
(x + n−1)2µ−2

and αs+1,1(n) = 1, αs+1,s+1(n) = n−s, αs+1,j(n) = O(1/nj−1) for j =
1, 2, . . . , s + 1, which proves (11) for f(x) = xs+1. Hence the proof of (11)
is completed. ¤

Lemma 3. Let p ∈ N0 be a fixed number. Then there exists a positive

constant M2 ≡ M2(p), depending only on the parameter p such that

‖Ln(1/wp(t); ·)‖p ≤ M2, n ∈ N. (12)

Moreover, for every f ∈ Cp we have

‖Ln(f ; ·)‖p ≤ M2‖f‖p, n ∈ N. (13)

Formula (8) and inequality (13) show that Ln, n ∈ N , is a positive

linear operator from the space Cp into Cp, for every p ∈ N0.

Proof. The inequality (12) is obvious for p = 0 by (2), (3) and (10).
Let p ∈ N . By (2) and (8)–(11) we have

wp(x)Ln(1/wp(t);x) = wp(x) {1 + Ln(tp;x)}

=
1

1 + xp
+

(x + n−1)p

1 + xp

p∑

j=1

αp,j(n)
(x + n−1)2j−2

.

For x ∈ [1,+∞), we get using Lemma 2

wp(x)Ln(1/wp(t);x) ≤ 1 +
p∑

k=0

(
p

k

)
xp−k

1 + xp

p∑

j=1

αp,j(n) ≤ M2(p).

Let x ∈ [0, 1) and
g(x) := (x + n−1)p+2−2j . (14)

We remark that g on [0, 1) is an increasing function for 1 ≤ j < (p + 2)/2
and a decreasing function for (p+2)/2 < j ≤ p. From this we immediately
obtain

αp,j(n)
(x + n−1)2j−2−p

≤ αp,j(n)
(1 + n−1)2j−2−p

≤ αp,j(n), 1 ≤ j < (p + 2)/2,
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αp,j(n)
(x + n−1)2j−2−p

≤ αp,j(n)
n−2j+2+p

≤ nj−1αp,j(n)
n−j+1+p

, (p + 2)/2 < j ≤ p.

Applying Lemma 2, we get

wp(x)Ln(1/wp(t);x) ≤ 1 +
p∑

j=1

αp,j(n)
(x + n−1)2j−2−p

≤ M2(p)

for x ∈ [0, 1), n ∈ N , where M2(p) is a positive constant depending only
upon p. Therefore, the proof of inequality (12) is completed.

The formulas (8)–(9) and (2) imply

‖Ln(f(t); ·)‖p ≤ ‖f‖p‖Ln(1/wp(t); ·)‖p, n ∈ N,

for every f ∈ Cp. Applying (12), we obtain (13). ¤

Lemma 4. Let p ∈ N0 be a fixed number. Then there exists a positive

constant M3 ≡ M3(p) such that

∥∥∥∥Ln

(
(t− ·)2
wp(t)

; ·
)∥∥∥∥

p

≤ M3

n
for all n ∈ N. (15)

Proof. The formulas given in Lemma 1 and (2), (3) imply (15) for
p = 0.

By (2) and (10) we have

Ln

(
(t− x)2/wp(t);x

)
= Ln

(
(t− x)2; x

)
+ Ln

(
tp(t− x)2;x

)
,

for p, n ∈ N . If p = 1, then by the equality we get

Ln

(
(t− x)2/w1(t);x

)
= Ln

(
(t− x)2; x

)
+ Ln

(
t(t− x)2; x

)

= Ln

(
(t− x)3; x

)
+ (1 + x)Ln

(
(t− x)2; x

)
,

which by (2), (3) and Lemma 1 yields (15) for p = 1.
Let p ≥ 2. Applying Lemma 2, we get

wp(x)Ln(tp(t−x)2; x)=wp(x)
{
Ln(tp+2; x)−2xLn(tp+1; x)+x2Ln(tp; x)

}
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= wp(x)

{
(x + n−1)p+2

p+2∑

j=1

αp+2,j(n)
(x + n−1)2(j−1)

− 2x(x + n−1)p+1

×
p+1∑

j=1

αp+1,j(n)
(x + n−1)2(j−1)

+ x2(x + n−1)p
p∑

j=1

αp,j(n)
(x + n−1)2(j−1)

}

= wp(x)(x + n−1)p

{
n−2 + (x + n−1)2

p+2∑

j=2

αp+2,j(n)
(x + n−1)2(j−1)

+ 2x(x + n−1)
p+1∑

j=2

αp+1,j(n)
(x + n−1)2(j−1)

+ x2
p∑

j=2

αp,j(n)
(x + n−1)2(j−1)

}
,

which by (2) and Lemma 2 implies for x ∈ [1,+∞)

wp(x)Ln(tp(t− x)2; x) ≤ n−1 (1 + x)p

1 + xp

{
1 +

p+2∑

j=2

nαp+2,j(n)
(x + n−1)2(j−2)

+ 2
p+1∑

j=2

nαp+1,j(n)
(x + n−1)2(j−2)

+
p∑

j=2

nαp,j(n)
(x + n−1)2(j−2)

}
≤ M4(p)

n
, n ∈ N.

Let x ∈ [0, 1). Applying Lemma 2 and arguing as in the proof of Lemma 3,
we easily obtain

wp(x)Ln

(
tp(t− x)2; x

) ≤ M4(p)
n

, n ∈ N.

Thus the proof is completed. ¤

2.2. Now we shall give approximation theorems for Ln.

Theorem 1. Let p ∈ N0 be a fixed number. Then there exists a

positive constant M5 ≡ M5(p) such that for every f ∈ C1
p we have

‖Ln(f ; ·)− f( · )‖p ≤ M5√
n
‖f ′‖p, n ∈ N. (16)
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Proof. Let x ∈ R0 be a fixed point. Then for f ∈ C1
p we have

f(t)− f(x) =
∫ t

x
f ′(u)du, t ∈ R0.

From this and by (8) and (10) we get

Ln(f(t);x)− f(x) = Ln

(∫ t

x
f ′(u)du; x

)
, n ∈ N.

But by (2) and (3) we have
∣∣∣∣∣
∫ t

x
f ′(u)du

∣∣∣∣∣ ≤ ‖f ′‖p

(
1

wp(t)
+

1
wp(x)

)
|t− x|, t ∈ R0,

which implies

wp(x)|Ln(f ; x)− f(x)|

≤ ‖f ′‖p

{
Ln (|t− x|; x) + wp(x)Ln

( |t− x|
wp(t)

; x
)} (17)

for n ∈ N . By the Hölder inequality and by (10) and Lemmas 1, 3, 4 it
follows that

Ln (|t− x|;x) ≤ {
Ln

(
(t− x)2; x

)
Ln (1;x)

}1/2 ≤
√

2
n

,

wp(x)Ln

( |t− x|
wp(t)

; x
)

≤ wp(x)
{

Ln

(
(t− x)2

wp(t)
; x

)}1/2 {
Ln

(
1

wp(t)
;x

)}1/2

≤ M7(p)√
n

for n ∈ N. From this and by (17) we immediately obtain (16). ¤

Theorem 2. Let p ∈ N0 be a fixed number. Then there exists M8 ≡
M8(p) such that for every f ∈ Cp and n ∈ N we have

‖Ln(f ; ·)− f( · )‖p ≤ M8ω1

(
f ; Cp;

1√
n

)
. (18)
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Proof. We use the Steklov function fh of f ∈ Cp

fh(x) :=
1
h

∫ h

0
f(x + t)dt, x ∈ R0, h > 0. (19)

From (19) we get

fh(x)− f(x) =
1
h

∫ h

0
∆tf(x)dt,

f ′h(x) =
1
h

∆hf(x), x ∈ R0, h > 0,

which imply

‖fh − f‖p ≤ ω1 (f ; Cp;h) , (20)

‖f ′h‖p ≤ h−1ω (f ; Cp; h) , (21)

for h > 0. From this we deduce that fh ∈ C1
p if f ∈ Cp and h > 0. Hence

we can write

wp(x)|Ln(f ;x)− f(x)| ≤ wp(x)
{|Ln(f − fh; x)|+ |Ln(fh; x)− fh(x)|

+ |fh(x)− f(x)|} := A1(x) + A2(x) + A3(x),

for n ∈ N , h > 0 and x ∈ R0. From (13) and (20) we get

‖A1‖p ≤ M2‖fh − f‖p ≤ M2ω1 (f ; Cp;h) ,

‖A3‖p ≤ ω1 (f ;Cp;h) .

By Theorem 1 and (21) it follows that

‖A2‖p ≤ M5√
n
‖f ′h‖p ≤ M5√

nh
ω1 (f ; Cp; h) .

Consequently

‖Ln(f ; ·)− f( · )‖p ≤
(

1 + M2 +
M5√
nh

)
ω1(f ;Cp;h).

Now, for fixed n ∈ N , setting h = 1√
n
, we obtain

‖Ln(f ; ·)− f( · )‖p ≤ M8(p)ω1

(
f ;Cp;

1√
n

)

and we complete the proof. ¤
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From Theorem 1 and Theorem 2 we derive following two corollaries:

Corollary 1. For f ∈ Cp, p ∈ N0, we have

lim
n→∞ ‖Ln(f ; ·)− f( · )‖p = 0. ¤

Corollary 2. If f ∈ C1
p , p ∈ N0, then

‖Ln(f ; ·)− f( · )‖p = O(1/
√

n ). ¤

2.3. Finally, we shall give the Voronovskaya type theorem for Ln.

Theorem 3. Let f ∈ C2
p :=

{
f ∈ Cp : f

′
, f

′′ ∈ Cp

}
. Then

lim
n→∞n {Ln (f ;x)− f(x)} = f ′(x) +

1
2
f ′′(x) (22)

for every x > 0.

Proof. Let x > 0 be a fixed point. Then by the Taylor formula we
have

f(t) = f(x) + f ′(x)(t− x) +
1
2
f ′′(x)(t− x)2 + ε(t; x)(t− x)2

for t ∈ R0, where ε(t) ≡ ε(t; x) is a function belonging to Cp and ε(x) = 0.
Hence by (8) and (10) we get

Ln(f ; x) = f(x) + f ′(x)Ln(t− x; x) +
1
2
f ′′(x)Ln((t− x)2; x)

+ Ln(ε(t)(t− x)2;x), n ∈ N,
(23)

which by Lemma 1 yields

lim
n→∞n {Ln (f ;x)− f(x)}

= f ′(x) +
1
2
f ′′(x) + lim

n→∞nLn(ε(t)(t− x)2; x).
(24)

By the Hölder inequality we have

|Ln(ε(t)(t− x)2; x)| ≤ {
Ln

(
ε2(t);x

)}1/2 {
Ln

(
(t− x)4; x

)}1/2
.

The properties of ε and Corollary 1 imply that

lim
n→∞Ln

(
ε2(t);x

)
= ε2(x) = 0.
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From this and by Lemma 1 we get

lim
n→∞nLn(ε(t)(t− x)2; x) = 0

and (22) follows from (24). ¤

Remark. In [1] it was proved that if f ∈ Cp, p ∈ N0, then for the
Szasz–Mirakyan operators Sn (defined by (1)) one has the following in-
equality

wp(x)|Sn(f ;x)− f(x)| ≤ M9ω2

(
f ; Cp;

√
x

n

)
, x ∈ R0, n ∈ N0,

where M9 = const. > 0 and ω2 (f ; ·) is the modulus of smoothness defined
by the formula

ω2(f ; Cp; t) := sup
0≤h≤t

‖∆2
hf( · )‖p, t ∈ R0,

where ∆2
hf(x) := f(x) − 2f(x + h) + f(x + 2h). In particular, if f ∈ C1

p ,
p ∈ N0, then

wp(x)|Sn(f ;x)− f(x)| ≤ M10

√
x

n
, (25)

for x ∈ R0 and n ∈ N (M10 = const. > 0).

Theorem 1, Theorem 2 and Corollary 2 in our paper show that the
operators Ln, n ∈ N , give better degree of approximation of functions
f ∈ Cp and f ∈ C1

p than Sn.
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