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He started teaching in his university years as a demonstrator. From
1983 he was an instructor at KLTE until 1987, when he won a three year
postdoctoral scholarship at Macquarie University in Sydney. In 1990 he be-
came an associate professor at KLTE, and then from 1992 to 1996 he taught
at Kuwait University. After his return in 1996 he was granted a scholarship
of the Hungarian National Scientific Foundation; and from 1997 he was as-
sociate professor at Kossuth University again. In 2000 he was appointed
full professor. He was also holder of the Széchenyi Professorial Scholarship
from 1998 to 2001. He reviewed articles regularly for the Mathematical Re-
views and for the Zentralblatt für Mathematik. From 1992 he was member
of our periodical’s editorial board.

His scientific achievement was rewarded by the Kató Rényi Prize of the
János Bolyai Mathematical Association in 1982, the Géza Grünwald Prize
in 1985, and the Academic Prize of the Hungarian Academy of Sciences
in 1992. He published his results in 48 papers, exposing them at a number
of universities and international conferences in Cambridge, Durham, Ann
Arbor, Oberwolfach, Leiden, Sydney, Tokyo and Kyoto. A whole chap-
ter is devoted to Béla Brindza’s results in Shorey and Tijdeman’s book
Exponential Diophantine Equations, a classical work on this subject.

Béla Brindza had an all-round talent for mathematics. Besides his
research work, he took an active part in mathematical life also at the level
of personal contacts. In particular, he paid a great deal of attention to
gifted young people. He conducted “student-olympics” study groups on
mathematics for high school students, while also guiding the professional
development of younger colleagues (Lajos Hajdu, Kálmán Liptai, László
Szalay, Attila Bérczes, Ákos Pintér). He was an outstanding lecturer, liked
and respected by his students. His special courses were lively and very
popular as he scintillated with wit.

Béla Brindza was an erudite, cheerful, sociable person, warm-hearted
and helpful. He had a passion for music. He was still very young when
his health betrayed him. A grave illness struck him down and he is no
longer with us. With his untimely death Hungarian Mathematics lost an
outstanding scientist, and the University of Debrecen an eminent professor.
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The scientific research work of Béla Brindza was almost entirely
devoted to diophantine number theory. He made significant contributions
to the theory of diophantine equations. His attention was mainly focused on
deriving bounds for the solutions and the number of solutions of important
classical equations which play a central rôle in modern diophantine analysis
and have a great number of applications. In Brindza’s papers modern,
powerful methods, including the theory of linear forms in logarithms, were
successfully combined with new, original ideas and techniques elaborated
by him. In what follows, we give a brief survey of his outstanding scientific
achievements.

1) Perhaps the most important results of Brindza are related to su-
perelliptic equations. Let f(X) be a polynomial with integer coefficients,
and let r1, . . . , rn denote the multiplicities of its zeros. For given m ≥ 2,
the superelliptic equation

f(x) = ym in integers x, y (1)

has only finitely many solutions, unless {m/(m, r1), . . . ,m/(m, rn)} is a
permutation of one of the n-tuples {t, 1, . . . , 1}, t ≥ 1, and {2, 2, 1, . . . , 1}.
This theorem, due to LeVeque (1964), was ineffective. Baker (1969) was
the first to derive bounds for the solutions of (1), at last in the particular
case when m ≥ 3 and f possesses at least 2 simple zeros, or m = 2 and f

possesses at least 3 simple zeros. As a graduate student, Brindza [3] made
effective LeVeque’s theorem in full generality. In fact he proved this in the
more general situation when the ground ring is the ring of S-integers of
a number field. In the last two decades Brindza’s result has often been
quoted, treated and applied in the literature.

Schinzel and Tijdeman (1976) showed that if in (1) m is also unknown,
then m can be effectively bounded above in terms of f , provided that f has
at least 2 distinct zeros. In his joint paper [41] with Bérczes and Hajdu,

Brindza gave an explicit upper bound for m in terms of the degree and
height of f . Further, together with Evertse and Győry he proved in [22]
that, for irreducible f , m can be estimated from above only in terms of
the degree and discriminant of f . These exerted considerable influence on
latter investigations of Haristoy, Győry, Pink, Pintér and others.

To extend the applicability of his results concerning (1), he showed in
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[12] that if

f(X) = fk1
1 (X) + . . .+ fkN

N (X)

with coprime non-constant polynomials f1, . . . , fN ∈ Z[X] such that µ =
mini ki > N(N − 1), then f(X) has at least µ/(N − 1) distinct zeros. This
implies that for such a polynomial f(X) with N ≥ 2, m must be bounded
in (1).

2) Brindza’s interest concerning (1) was greately motivated by Schäff-
er’s equation

Sk(x) = ym in integers x, y > 1, (2)

where k and m > 1 are integers and Sk(x) = 1k +2k +. . .+xk. Since Sk(X)
can be written as (Bk+1(X+1)−Bk+1(0))/(k+1) where Bk+1(X) denotes
the (k+1)th Bernoulli polynomial, equation (2) is in fact a special superel-
liptic equation. Schäffer (1956) characterized those pairs (k,m) for which
(2) has infinitely many solutions. This was extended by Győry, Tijdeman
and Voorhoeve (1979) to the more general equation when in (2) m is also
unknown and Sk(x) is replaced by Sk(x)+R(x), where R(x) is any polyno-
mial with coefficients in Z. The above-mentioned results were ineffective.
By means of his general effective theorem on equation (1) Brindza [4] suc-
ceeded to make effective these results. Moreover, he generalized them in an
effective form for even more general equation of the shape F (Sk(x)) = ym,
where F ∈ (Z[X])[Y ] satisfies some natural conditions.

He derived also upper bounds for the number of solutions of (2). In
[19] he proved that for any given m ≥ 3 with m �= 4, equation (2) has at
most e7k solutions. Further, when in (2) the exponent m is also unknown
he proved with Pintér [44] that apart from the case (k,m) = (3, 4), equa-
tion (2) possesses at most max{c, e3k} solutions, where c is an effectively
computable absolute constant.

In his nice joint article [47] with Bilu, Kirschenhofer, Pintér and
Tichy it is showed that for given k, l ≥ 2 and for sufficiently large inte-
ger x, Sk(x) is not a product of l consecutive integers. Further, if k �= l then
Sk(x) �= Sl(y) holds, provided x, y are sufficiently large. To prove these,
the authors had to completely characterize the decomposable Bernoulli
polynomials, which is a result of independent interest.
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3) A famous theorem of Tijdeman (1976) states that the Catalan equa-
tion

xm − yn = 1 in integers x, y,m, n > 1 (3)

has only finitely many solutions, and all of them can be, at least in prin-
ciple, effectively determined. In [8], Brindza, Győry and Tijdeman ex-
tended this result to the number field case when x, y are integers in an
arbitrary but fixed number field K. They showed that if m, n > 1, mn > 4
and x, y are not roots of unity, then m, n and the heights of x, y can be
estimated from above by an effective constant depending only on K. In
contrast with polynomial diophantine equations, the proof was not merely
a straightforward generalization of the rational case. In the general situa-
tion new arguments were needed to prove that m and n are bounded and
that x or y has a bounded norm. Later, Brindza [13] further generalized
this result for the cases of S-integers x, y of K.

Following a different approach, recently Mihailescu proved that the
only solution of (3) is 32−23 = 1. It would be interesting to obtain similar
results in the more general cases considered by Brindza.

4) Many number theoretical problems can be reduced to unit equations
of the form

au+ bv = c in u, v ∈ UK , (4)

where a, b, c are given non-zero elements in a number field K, and UK

denotes the unit group of K. By a theorem of Evertse, Győry, Stewart
and Tijdeman (1988) (4) has at most 2 solutions for “almost all” triples
of a, b, c, up to a proportional factor. In his joint paper [18] with Győry,

Brindza considerably improved this result in the important special case
when a, b, c, are rational numbers. Then one may assume that a, b, c are
coprime positive integers and c ≥ a, b. In [18] it is proved that for all but
finitely many triples a, b, c of coprime positive integers, (4) has at most
one solution u, v (up to conjugacy), and u, v must belong to Q or a real
quadratic subfield of K. It is also showed in an effective form that if c is
sufficiently large and ab > 1 or [K : Q] is odd, then no solution exists.
This surprising result was the first application of the simultaneous Baker’s
method to diophantine equations.
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Effective versions of Dirichlet’s unit theorem play an important rôle
in applications of unit equations. In [24] Brindza employed a simple ar-
gument from the geometry of numbers to obtain a set of generators of
small height for the non-torsion subgroup of the S-unit group in a number
field. His ingenious proof has exerted an influence on latter investigations
of Hajdu, Bugeaud, Győry and others.

5) Several remarkable results were obtained by Brindza on the Thue
equation

F (x, y) = m in x, y ∈ Z, (5)

where F is an irreducible binary form of degree n ≥ 3 with integer coeffi-
cients and m is a non-zero integer. By Thue’s theorem (1909) (5) has only
finitely many solutions. The first explicit bound for max{|x|, |y|} was given
by Baker (1968). This was later improved by several people. A surprisingly
good upper bound was derived by Brindza in terms of the height H(F )
of F . Namely, he derived in [22] with Evertse and Győry a bound of
the form c1H(F )3/n|D(F ) ·m|c2 , where D(F ) denotes the discriminant of
F and c1, c2 are effectively computable numbers depending only on the
splitting field of F .

There exist uniform upper bounds for the number of solutions of (5)
which are independent of the coefficients of F . Bombieri and Schmidt
(1987) established e.g. the bound cns+1, where c is an absolute constant
and s denotes the number of distinct prime factors of m. Brindza [32]
proved that if m is large enough with respect to |D(F )| then the number
of solutions does not exceed

n(6s + 6).

It is a remarkable fact that this bound is already best possible in terms
of n. In his joint paper [42] with Pintér, van der Poorten and Wald-

schmidt he obtained the bound 2n2(s+ 1) + 13n for the number of those
solutions x, y for which max{|x|, |y|} is larger than a relatively small and
explicitly given bound which depends only on F and m. In other words,
only a “few” solutions of (5) can be “large”.

6) In [42], the following new gap principle of Brindza was the main
tool. Let t ∈ N and λ, η0, . . . , ηt−1, µ, ψ0, . . . , ψt−1 ∈ C∗. Suppose that the
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equation
ληk + µψk = 1,

where ηk = ηk0
0 . . . η

kt−1

t−1 , ψk = ψk0
0 . . . ψ

kt−1

t−1 , has at least t + 2 solutions
kj = (k0,j , . . . , kt−1,j) ∈ Zt, j = 1, 2, . . . , t+ 2. Let

K = max
0≤i≤t−1, 1≤j≤t+1

{2, |ki,j+1 − ki,j|}.

If |ληk1| ≥ 6 and |ηkj+1/ηkj | ≥ 9(t+ 1)t/2Kt for j = 1, . . . , t+ 1, then

(t+ 1)t/2Kt/4 ≥ |ληk1 |.

In case of Thue equations this ensures exponential gaps between the solu-
tions, provided that the equation has sufficiently many solutions. We note
that the earlier gap principles yielded only polynomial gaps.

In [40] Brindza applied his gap principle to the generalized Rama-
nujan–Nagell equation

f(x) = bz in x, z ∈ Z, z > 1, (6)

where b ∈ Z with |b| > 1 and f ∈ Z[X] is of degree n with at least two
distinct zeros, one of which is not rational. He showed that the number of
solutions of (6) is at most 6n2(ns+n+ 3)(s+ 1), subject to the condition
that |b| is sufficiently large. Here s denotes the number of distinct prime
factors of b. It is likely that Brindza’s gap principle will lead to further
applications as well.

7) Brindza was also interested in diophantine equations over func-
tion fields and finitely generated domains. Joining the investigations of
Schmidt, Győry, Mason and others, he established several nice results in
this direction.

Let K be a function field in one variable over an algebraically closed
field k of characteristic 0, S a finite set of places of K, and f(X) a polyno-
mial with coefficients in K and with zero multiplicities r1, . . . , rn, respec-
tively. As an analogue of his remarkable result over number fields, Brindza

[10] derived together with Mason an explicit upper bound for the heights
of S-integral solutions x, y of (1), subject again to the condition that
{m/(m, r1), . . . ,m/(m, rn)} is not a permutation of either {t, 1, . . . , 1} or
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{2, 2, 1, . . . , 1}. Further, with Pintér and Végső he gave in [28] an ex-
plicit upper bound also for m, under the condition that in (1) n ≥ 2,
x, y ∈ K and y /∈ k.

As a common generalization of Thue equations and superelliptic equa-
tions Brindza considered in [11] the equation

F (x, y) = czm in relatively prime S-integers x, y, z, (7)

where F is a binary form with coefficients in K and c ∈ K∗. Genaralizing
and improving a theorem of W. Schmidt (1980), he obtained an explicit
bound for the heights of the solutions of (7) in the case that F has at least
three distinct simple linear factors over the splitting field of F . Moreover,
he gave also an explicit upper bound for m when z /∈ k.

Lang (1962) extended several classical diophantine finiteness results
to that general situation when the ground ring R is any given finitely
generated integral domain over Z. Lang’s results were, however, ineffec-
tive. Győry (1983) worked out a method to establish effective finiteness
theorems for Thue equations and more generally for decomposable form
equations over R. Combining this method with his own results obtained
over number fields and function fields Brindza [17], [27] generalized his
effective finiteness theorems on equations (1) and (3) for the finitely gen-
erated case.

8) Finally, let us mention an interesting result of Brindza in algebraic
coding theory . Brindza’s attention was drawn to the following problem by
K. Buzási. Let K be a finite field of characteristic 2, and KG the group
algebra of G over K where G = (a) × (b) and ap = bp = 1 for an odd
prime p. Then KG = I0 ⊕ . . . ⊕ Ip+1, where each In is a minimal ideal
generated by en, n = 0, 1, . . . , p+ 1,

e0 =
∑

g∈G

g, ep+1 =
p−1∑

i=0

bi
(
a+ . . .+ ap−1

)

and

en =
p−1∑

i=0

(
abn−1

)i(
b+ . . .+ bp−1

)
, n = 1, . . . , p.

Brindza [6] as a graduate student disproved an old conjecture of S. D. Ber-
man (1967) by proving that if p ≡ −1 (mod 4) and if I ⊂ KG is an ideal
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which is the sum of three minimal ideals different from I0 and Ip+1, then
the code distance d(I) is equal to 2(p − 1).
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[33] B. Brindza, Á. Pintér and J. Végső, On polynomial values of the discriminant
of characteristic polynomials, J. Number Theory 61 (1996), 292–300.
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Béla Brindza 11

[38] B. Brindza, K. Liptai and L. Szalay, On products of the terms of linear recur-
rences, in: Proc. of Number Theory Conf., (Eger, 1996), 1998, 101–106.
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[41] B. Brindza, A. Bérczes and L. Hajdu, On power values of polynomials, Publ.
Math. Debrecen 53 (1998), 375–381.
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