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Abstract. We show that the language of all primitive palindromes is not
context-free. In addition, a characterization of slender and polyslender palin-
dromic context-free languages is given. Some related results and problems are
also discussed.

1. Introduction

Combinatorial properties of words play an important role in mathe-
matics and theoretical computer science (see, e.g., [5], [10], [15], [32], etc.).
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Secretaŕıa de Estado de Educación y Universidades, Ministerio de Educación. Cultura
y Deporte, España.
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In this paper we study the language of all palindromic primitive words
over a nontrivial alphabet.

Let us fix a (nonempty, finite) alphabet X, having at least two letters.
A primitive word (over X, or actually over an arbitrary alphabet) is a
nonempty word not of the form wm for any nonempty word w and integer
m ≥ 2. The set of all primitive words over X will be denoted by Q(X),
or simply by Q if X is understood. Q has received special interest: Q and
X+ \Q play an important role in the algebraic theory of codes and formal
languages (see M. Lothaire [23] and H. J. Shyr [32]).

In [4] and [5] the authors proved that Q is not deterministic context-
free. It was also shown that Q is not unambiguous context-free (J.-P.

Allouche [1], H. Petersen [25]), moreover, that it is not linear context-
free and not bounded (S. Horváth [13]). Furthermore, in [14] and [16],
decidability and related questions concerning Q were studied. Returning
to the relation of Q to the Chomsky language classes, it is easy to see
that Q is deterministic context-sensitive. The last-in-first-out nature of a
pushdown store does not provide the means to remember one substring and
then check it for equality or nonequality against another substring. The
information needed first for such a check is bound to reside at the bottom
of the store. Therefore, we strongly believe that the following conjecture
is valid.

Conjecture (P. Dömösi, S. Horváth, M. Ito, 1991 [4]). Q is not

context-free.

We formulated this conjecture also in [5] and in all of our later papers
concerning Q. We tried to prove this conjecture by applying different types
of strong pumping lemmas (see [6], [7]), but it has turned out that Q satis-
fies all of the considered pumping properties, and even a strengthened, new
interchange property (see [13]). In [13] it was (easily) observed that the rel-
ative density of nonprimitive words exponentially quickly tends to zero as
the length of words tends to infinity, and it was remarked that intuitively
this fact is the reason, why Q is closed even under quite strong combi-
natorial manipulations (since “almost all words are primitive”, therefore
there is very little chance to “go out from Q” by means of such manipula-
tions). Another possibility is to consider an appropriate regular language
R and prove that Q ∩ R is not context-free. However, contrary to our
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expectation, Q∩ (ab∗)n has proved to be context-free for exponents n, be-
longing to wider and wider (infinite) classes of positive integers (see [6],
[7], [20]). Therefore, the main problem has remained open. In this paper
we study these problems within the class of palindromic languages. More-
over, we have some investigations in the family of slender and polyslender
palindromic languages, too.

2. Preliminaries

For any word uvw, we say that v is a subword of uvw. Let w be a
word. We put w0 = λ, and wn = wn−1w for n >> 0.Thus wk (k ≥ 0)
is the k-th power (or, in short, a power) of w. As is customary, we put
w∗ = {wn : n ≥ 0} and w+ = {wn : n > 0}. A word is called primitive
iff it cannot be written in the form of a power with exponent greater
than 1. (Thus the empty word λ is nonprimitive.) We will denote by
Q(X) the set of all primitive words over X, or simply by Q if X is clear.
For a word p = x1 . . . xn ∈ X+, where xi ∈ X (i = 1, . . . , n), we denote
its reverse xn . . . x1 by pR. A word p is a palindrome iff p = pR. (Of
course, λ is a palindrome, too.) The set of all palindromes over X will
be denoted by Pal(X), or simply by Pal if X is understood. Furthermore,
we call a language palindromic iff every word in L is a palindrome (i.e., iff
L ⊆ Pal). A nonempty language L ⊆ X∗ is said to be self-embedding iff
it can be generated by a context-free grammar G = (V,X, S, P ) such that
S → ASB ∈ P for some A,B ∈ (V ∪ X)∗, moreover, for an appropriate
pair w, z with wz ∈ X+, A

∗⇒ w and B
∗⇒ z. Following, e.g., H. J. Shyr

[32], we call a language L ⊆ X∗ dense (in X∗) iff for every word w ∈ X∗,
L∩X∗wX∗ �= ∅. We shall use the following well-known property of regular
languages.

Proposition 2.1 (See, e.g., [27]). A language L ⊆ X∗ is regular if

and only if X∗ \ L is regular. �

We shall also use the following pumping lemmas for context-free lan-
guages, the first of which (Theorem 2.2) is traditionally called Bar–Hillel’s
lemma in the literature.
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Theorem 2.2 (Y. Bar–Hiller, M. Perles, E. Shamir [2], see also
in [12], [27] or [28]). For any context-free grammar G, one can effectively

compute a constant p ≥ 1 from G, such that, for any z ∈ L(G), if |z| > p,

then z can be factorized into z = uvwxy so that,

(1) |vx| > 0,

(2) |vwx| ≤ p, and

(3) uviwxiy ∈ L(G) for all i ≥ 0. �

Theorem 2.3 (P. Dömösi, M. Ito, M. Katsure, C. L. Nehaniv

[8]). For any context-free grammar G, one can effectively compute a con-

stant c ≥ 2 from G, such that, for any z ∈ L(G) and any e > 0, if |z| ≥ ce,

and in z, e positions are excluded, then z can be factorized into z = uvwxy

so that,

(1) |vx| > 0,

(2∗) vx contains no excluded position, and

(3) uviwxiy ∈ L(G) for all i ≥ 0. �

By comparing the conditions (2) and (2∗) we can observe, that the
latter result, unlike the former one (Bar–Hillel’s lemma, Theorem 2.2),
does not contain any upper bound on the length of vwx. Therefore it is
not an extension of Bar–Hillel’s lemma.

Consider the set Q of all primitive words over an alphabet X. The
next theorem is widely known as Borwein’s lemma.

Theorem 2.4 (D. Borwein, see [32], p. 8). If a ∈ X, pq ∈ X+ \ a+

and paq ∈ X+ \ Q then pq ∈ Q. �

We shall also use the following results.

Theorem 2.5 (S. Horváth, J. Karhumäki, J. Kleinj [15]). A

regular language L ⊆ X∗ is palindromic if and only if it is the union of

finitely many languages of the form

Lp = {p}, Lq,r,s = qr(sr)∗qR, (p, q, r, s ∈ X∗),

where p, r and s are palindromes. �
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Theorem 2.6 (S. Horváth, J. Karhumäki, J. Kleijn [15]). A

context-free language L ⊆ X∗ is palindromic if and only if it is of the form

L =
⋃

a∈X∪{λ}
{papR : p ∈ L(a)},

where the L(a) ⊆ X∗ (a ∈ X ∪ {λ}) are regular languages (uniquely

determined by L). �

3. Slenderness and Polyslenderness

Denote by |H| the cardinality of H for any set H and let N be denote
the set of nonnegative integers. A language L is said to be length bounded
(or more precisely, density bounded) by a function f : N → N if we
have |{w ∈ L : |w| = n}| ≤ f(n). Note that every language L ⊆ X∗

is length bounded by f(n) = |X|n. A language that is length bounded
by a polynomial of degree k is termed k-polyslender. Slender languages
coincide with 0-polyslender languages. A language is called polyslender
iff it is k-polyslender for some k. A language L is called k-bounded iff
L ⊆ w1

∗ · · ·wk
∗ holds for some words w1, . . . , wk ∈ X+.

Theorem 3.1 (D. Raz [26], A. Szilárd, S. Yu, K. Zhang, J. Shal-

lit [33]). Every k + 1-bounded language is k-polyslender. �

The next statement was first proved by M. Latteux and G. Thier-

rin [22], and later, independently, by D. Raz [26].

Theorem 3.2 (M. Latteux and G. Thierrin [22], D. Raz [26]).
Every polyslender context-free language is bounded. �

We shall use the following simple observation.

Proposition 3.3. Let L be the union of the languages L1, . . . , Lk

(k ≥ 1). Then L is polyslender if and only if all of L1, . . . , Lk are polyslen-

der. In particular, L is slender if and only if all of L1, . . . , Lk are slender.

�

Now we consider the following recursive definition. A language L ⊆ X∗

is called a non-crossing 1-multiple paired loop language iff it is of the form
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L = {uvnwxny : n ≥ 0} for some words u, v,w, x, y ∈ X∗ with vx �= λ.
Inductively, for every pair k, � of positive integers, L is a non-crossing k+�-
multiple paired loop language iff one of the following conditions holds:

(i) L = {uvnL′xny : n ≥ 0} for some non-crossing k + � − 1-multiple
paired loop language L′ and words u, v, x, y with vx �= λ;

(ii) L = L1L2, where L1 is a non-crossing k-multiple paired loop lan-
guage and L2 is a non-crossing �-multiple paired loop language.

In addition, non-crossing 1-multiple paired loop languages are simply
called paired loop languages. L ⊆ X∗ is called a k-multiple loop language iff
there exist u1, v1, . . . , uk, vk, uk+1 ∈ X∗ such that, L = u1v

∗
1 . . . ukv

∗
kuk+1.

1-multiple loop languages are simply called loop languages.

For slender regular languages, we have the following characterization,
first proved by M. Kunze, H. J. Shyr and G. Thierrin [21], and later,
independently, by J. Shallit [29], [30], [31], and more later, also indepen-
dently, by G. Păun and A. Salomaa [24] ([30] and [31] are an extended
abstract form and a revised form, respectively, of [29]).

Theorem 3.4 (M. Kunze, H. J. Shyr and G. Thierrin [21],
J. Shallit [29], [30], [31] and G. Păun, A. Salomaa [24]). A regu-

lar language is slender if and only if it is a finite disjoint union of loop

languages. �
The next extension of the above result also holds.

Theorem 3.5 (A. Szilárd, S. Yu, K. Zhang, J. Shallit [33]).
Given a nonnegative integer k, a regular language is k-polyslender if and

only if it is a finite disjoint union of (k + 1)-multiple loop languages. �
The next theorem was proved by M. Lattux and G. Thierrin [22]

and later, independently, by L. Ilie [17] and D. Raz [26]. It was also
conjectured by G. Păun and A. Salomaa [24].

Theorem 3.6 (M. Latteux and G. Thierrin [22], L. Ilie [17],
D. Raz [26]). Every slender context-free language is a finite disjoint union

of paired loop languages. �
Following S. Ginsburg [11], for any pair of words x, y ∈ X∗ and

Z ⊆ X∗ we put
(x, y) � Z = {xnZyn : n ≥ 0}.
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Theorem 3.7 (S. Ginsburg [11]). The family of bounded context-

free languages is the smallest family of languages containing all finite lan-

guages and closed with respect to the following operations: finite union,

finite product, (x, y) � Z, where x and y are words. �

Using this result, the following characterization can be derived for
polyslender languages.

Theorem 3.8 (P. Dömösi and A. Matescu [9]). A context-free

language is k-polyslender if and only if it is a finite union of non-crossing

k + 1-multiple paired loop languages. �

We note that L. Ilie, G. Rozenberg and A. Salomaa [18] also give
a characterization of polyslender languages which is essentially equivalent
to the above statement. �

4. Main results

Throughout this section we assume that our alphabet (X) has at least
two letters (say a, b ∈ X).

Lemma 4.1. Let L ⊆ X∗ be a palindromic language (i.e., L ⊆
Pal(X)). Then L is context-free if and only if Pal(X) \ L is context-free.

Furthermore, if we write L in the form

L =
⋃

a∈X∪{λ}
{papR : p ∈ L(a)}

(where by Theorem 2.6, the languages L(a) are regular and uniquely de-

termined by L), then

Pal(X) \ L =
⋃

a∈X∪{λ}
{papR : p ∈ X∗ \ L(a)}.

Proof. Easy by Theorem 2.6 and Proposition 2.1. �

Consider again the set Q (= Q(X)) of all primitive words over X. We
put Q(1) = Q ∪ {λ} and Q(i) = {qi : q ∈ Q} for i > 1. The next result
shows a distant analogy with Rice’s theorem in recursion theory if we let
“context-free” correspond to “recursive” (see, e.g., [12]).
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Theorem 4.2. Let H ⊆{1, 2, 3, . . . } and let L(H)= Pal∩{⋃i∈H Q(i)}.
Then L(H) is context-free if and only if either H = ∅ or H = {1, 2, 3, . . . }.

First proof. If H = ∅ or H = {1, 2, 3, . . . } then obviously L is
context-free (because then either L = ∅ or L = Pal, respectively). Oth-
erwise, by Lemma 4.1, we can suppose 1 /∈ H (since in the opposite case
we can take {1, 2, 3, . . . } \ H instead of H), and let k ∈ H be arbitrary,
so k ≥ 2. Now suppose indirectly that L(H) is context-free, so it has
to satisfy Bar–Hillel’s lemma (Theorem 2.2), with some constant p ≥ 1.
Clearly

ap+1bp+1ap+1 ∈ Pal∩Q,

so putting
z = (ap+1bp+1ap+1)k,

we have
z ∈ Pal∩Q(k) ⊆ L(H).

Obviously |z| > p, so by Bar–Hillel’s lemma, there is a factorization z =
uvwxy such that, |vx| > 0, |vwx| ≤ p and z′ = uwy ∈ L(H), i.e., we
have taken i = 0 as “iteration exponent” in (3) (in Bar–Hillel’s lemma).
Since 1 �∈ H, z′ should be nonprimitive. Consider now the following cyclic
permutation z̄ of z:

z̄ = (a2p+2bp+1)k.

The original cancellation of v and x from z appears in a circularly shifted
way in z̄, yielding some word z̄′ which is a cyclic permutation of z′. Further-
more, since |vwx| ≤ p, the shifted cancellation reduces either the length
of exactly one “a-portion” a2p+2 or that of exactly one “b-portion” bp+1,
or both at a time, and in each case, the reduced length/lengths is/are still
positive. Therefor e in each case, since k > 1, clearly z̄′ has to be primitive.
Finally, by the obvious invariance of primitivity under cyclic permutation,
z′ has to be primitive, too, a contradiction. �

Remarks. 1. Here we have used a strongly restricted version of Bar–
Hillel’s lemma, in which the iteration exponent can only be 0. More gener-
ally, we can even observe that this restricted version of Bar–Hillel’s lemma
is still a powerful device, it could be used instead of the full version, in most
“classical”, typical non-context-freeness proofs, known from the literature.
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2. In the above first proof, we did not use the requirement that z′ =
uwy should be a palindrome, too.

Second proof. The difference relative to the first proof begins after
choosing an arbitrary nonempty subset H of the set {2, 3, 4, . . . } and in-
directly supposing that L(H) is context-free. We start with a few. easy
observations on the words z of the form

z = d(k1, �1) . . . d(kt, �t),

where d(k, �) is a shorthand with the meaning

d(k, �) = abkab�a, for k, � ≥ 1

(so clearly d(k, �) is always a primitive word), further, t ≥ 2, and k1, . . . , kt,
�1, . . . , �t ≥ 1. With the further shorthand dj = d(kj , �j), j = 1, . . . , t, we
can write z in the following, more concise form

z = d1 . . . dt.

Now it is easy to see that for an arbitrary s ≥ 2, z is an s-th power if and
only if s divides t, and

z = (d1 . . . dt/s)
s.

So for z to be an s-th power, it is necessary that in the sequence

d1 . . . dt,

every member should have at least s occurrences. If here t is odd, then
necessarily even s ≥ 3. Now we apply Theorem 2.3 to L(H). To this end,
in z let t ∈ H, and let

d1, . . . , dt = d(m,m), i.e., z = d(m,m)t,

where
m ≥ 3(c − 1)/2, i.e., 2m + 3 ≥ 3c,

and c (≥ 2) is the constant from Theorem 2.3. Clearly

z ∈ Pal∩Q(t) ⊆ L(H).

So we can apply Theorem 2.3 to the word z of L(H), excluding in z exactly
those positions containing an ‘a’, and choosing iteration exponent i = 2
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in (3) (in the theorem). The iteration (with i = 2) modifies one or two of
the t d-factors of z, and we obtain a modified word z′ ∈ L(H). If now t

is odd, then (see above) for z′ to be nonprimitive, there should be at
least three modified (longer) d-factors in z′, which is impossible, So let
t be even. Then, since z′ should be a palindrome, too, in z necessarily
exactly two, symmetrically positioned d-factors, say dj and dt+1−j , for
some 1 ≤ j ≤ t/2, will be modified into some (dj)′ and (dt+1−j)′ such that,

(dj)′ = ((dt+1−j)′)
R
,

so these two, modified d-factors differ from one another, and from all the
other, unchanged d-factors, too. (Namely, for some 1 ≤ m′ ≤ m, either
(dj)′ = d(m + m′,m), and (dt+1−j)′ = d(m,m + m′), or vice versa.) So
each of the two different, modified d-factors has only one occurrence in z′,
therefore (see the above), z′ cannot be nonprimitive, a contradiction again.

�

Conjecture. We conjecture that the statement of Theorem 4.2 re-

mains valid if we omit “Pal∩” from the definition of L(H).

From this “new” conjecture our “old” conjecture (see [5]) that Q is
not context-free, would easily follow as a special case. However at present
we cannot even prove that Q is not context-free. We can (easily) prove
only (similarly to the above proof of Theorem 4.2) that i ≥ 2 and Q(i) ⊆
L ⊆ X∗ \ Q imply that L is not context-free.

Problem. Characterize those palindromic regular, context-free, con-

text-sensitive, and phrase-structure (type 0 or recursively enumerable) lan-

guages, consisting of primitive words. Furthermore, characterize those lin-

ear, indexed, and linear indexed languages, that have the same property.

Now we prove two Lemmas.

Lemma 4.3. Let L = L1 ∪ . . . ∪ Lk(k ≥ 1). If L is dense then one of

the Li is dense.

Proof. Supposing the contrary, let wj∈X∗ such that, Lj∩X∗wjX
∗=∅

(j = 1, . . . , k). Then, by L being dense, L∩X∗w1 · · ·wkX
∗ �= ∅. Therefore

for some i, 1 ≤ i ≤ k, Li∩X∗w1 . . . wkX
∗ = Li∩X∗w1 . . . wi . . . wkX

∗ �= ∅,
which implies Li ∩ X∗wiX

∗ �= ∅, a contradiction. �
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Lemma 4.4. Let L =
⋃

a∈X∪{λ}{uauR : u ∈ L(a)} be an arbitrary

palindromic language. (The languages L(a) are uniquely determined by L.)

If L is dense, then L(a) is dense for some a ∈ X ∪ {λ}.

Proof. By Lemma 4.3, {uauR : u ∈ L(a)} is dense for some a ∈ X ∪
{λ}. Let w ∈ X∗. Therefore, there exist x, y ∈ X∗ and u ∈ L(a) such that
xwwRwwRy = uauR. Consequently, wwR is a subword of L(a) or L(a)R.
In fact, in either case, wwR is a subword of L(a). Hence X∗wX∗ ∩L(a) is
not empty. This completes the proof of the lemma. �

Given a language L ⊆ X∗, let deg(L) = {i ≥ 0 : pi ∈ L for some
p ∈ Q}. (We put z0 = λ for any word z.) We prove the following partial
result concerning our above mentioned open problem.

Theorem 4.5. Let L ⊆ X∗ be a dense palindromic context-free lan-

guage. Then L∩(X+\Q) is not empty. More exactly, we have that deg(L)
is infinite.

Proof. Let L =
⋃

a∈X∪{λ}{uauR : u ∈ L(a)}. By Lemma 4.4 and
Theorem 2.6, there exists an a ∈ X ∪{λ} such that L(a) is a dense regular
language. Let A = (S,X, δ, s0, F ) be a deterministic automaton accepting
L(a). Put Sp = {δ(s, p) : s ∈ S} (p ∈ X∗). Let v ∈ X∗ be a word such
that |Sv| = min{|Sx| : x ∈ X∗}. Since L(a) is dense, there exist u,w ∈ X∗

such that r = uvw ∈ L(a). It is obvious that |Sr| = |Sv| = min{|Sx| :
x ∈ X∗}. Since S(arRr)2 ⊆ SarRr ⊆ Sr and |Sr| = min{|Sx| : x ∈ X∗},
S(arRr)2 = SarRr = Sr. Hence there exists k, k ≥ 1 such that S(arRr)k

and Sr coincide. Now consider r(arRr)ik ∈ X∗ for any i, i ≥ 1. Then
δ(s0, r(arRr)ik) = δ(δ(s0, r), (arRr)ik) = δ(s0, r) ∈ F and r(arRr)ik ∈
L(a). Notice that r(arRr)ika[(arRr)ik]RrR ∈ {uauR : u ∈ L(a)} ⊆ L.
Therefore, r(arRr)ika[(arRr)ik]RrR = r(arRr)ika(rRra)ikrR =
(rarR)ikrarR(rarR)ik = (rarR)2ik+1 ∈ L, for every i ≥ 1. Hence deg(L) is
infinite. �

Using Theorem 4.5, we get two further partial results concerning our
open problem above. (A primitive palindrome is defined as a primitive
word which is a palindrome at the same time.)
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Corollary 4.6. There exists no dense palindromic context-free lan-

guage consisting of primitive words. �

The second corollary actually represents a completely different proof
of a special case ({H} = 1) of Theorem 4.2 (since of course, for any
language L, L ∩ Q is context-free if and only if L ∩ Q(1) is context-free).

Corollary 4.7. The language of all primitive palindromes is not con-

text-free. �

Now we prove another property of the language of all primitive palin-
dromes.

Proposition 4.8. Q∩Pal cannot be generated by any self-embedding

grammar.

Proof. Consider a grammar G = (V,X, S, P ) with S → ASB ∈ P

for some A,B ∈ (V ∪ X)∗ such that L(G) is nonempty, moreover, for an
appropriate pair w, z with wz ∈ X+, A

∗⇒ w and B
∗⇒ z. Suppose that,

contrary to our statement, L(G) = Q ∩ Pal. First we prove w = zR.
Let k be a positive integer with k > |w|, |z|. Moreover, let a, b be a

pair of distinct letters in X. Then akbak ∈ Q ∩ Pal. In addition, by using
S → ASB ∈ P , A

∗⇒ w and B
∗⇒ z, wakbakz ∈ Q∩Pal also holds. By k >

|w|, |z|, this directly implies w = zR. On the other hand, then azwazwa ∈
Pal for every a ∈ X. In addition, (azw)2 /∈ Q trivially holds. But then,
using Borwein’s Lemma (Theorem 2.4), zw /∈ a+ implies azwazwa ∈ Q.
Let us suppose wz /∈ a+. (Otherwise we can consider another letter of X

instead of a.) Then azwazwa ∈ Q∩Pal. Simultaneously, S
∗⇒ wazwazwaz,

a contradiction. This ends the proof. �

Now by using the above argument we can prove the following

Proposition 4.9. Q cannot be generated by any self-embedding

grammar.

Proof. Consider again a grammar G= (V,X, S, P ) with S →ASB ∈P

for some A,B ∈ (V ∪ X)∗ such that L(G) is nonempty, moreover, for an
appropriate pair w, z with wz ∈ X+, A

∗⇒ w and B
∗⇒ z. Suppose that,

contrary to our statement, L(G) = Q. Let us consider a letter a ∈ X with
wz /∈ a+. Then, using Borwein’s Lemma (Theorem 2.4), azwazwa ∈ Q
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because azwazw /∈ Q obviously holds. Simultaneously, S
∗⇒ wazwazwaz,

a contradiction. The proof is complete. �

By Theorems 2.4 and 3.4 we immediately get the following statement.

Proposition 4.10. Every palindromic regular language is slender. �

It is easy to see that the non-regular context-free palindromic language
{ppR : p ∈ X∗} is non-slender. Therefore, the above statement cannot be
extended to context-free languages. However, we prove the following two
characterizations.

Theorem 4.11. Every slender palindromic context-free language is

a finite union of languages of the form {uvnw(vR)nuR : n ≥ 0, w is a

palindrome}.

Proof. Consider a slender palindromic context-free language L. Then
by Theorem 2.6 we have L =

⋃
a∈X∪{λ}{papR : p ∈ L(a)}, where the L(a)

(a ∈ X ∪ {λ}) are regular languages. By Proposition 3.3, these languages
have to be slender. Therefore, by Theorem 3.4, they have to be finite
unions of loop languages. Thus we have that for every a ∈ X ∪ {λ} there
are words ui, vi, wi ∈ X∗, i = 1, . . . ,m such that,

{papR : p ∈ L(a)} =
m⋃

i=1

{uiv
n
i wiawR

i (vR
i )nuR

i : n ≥ 0}.

This completes the proof. �

Theorem 4.12. Every polyslender palindromic context-free language

is a finite union of languages of the form {w1z
n1
1 w2z

n2
2 w3 . . .wtz

nt
t p(zR

t )ntwR
t

. . . wR
3 (zR

2 )n2wR
2 (zR

1 )n1wR
1 : t ≥ 1, n1, . . . , nt ≥ 0, p is a palindrome}.

Proof. Let L be a polyslender palindromic context-free language. In
view of Theorem 2.6 we have L =

⋃
a∈X∪{λ}{papR : p ∈ L(a)}, where

the L(a) (a ∈ X ∪ {λ}) are regular languages. By Proposition 3.3, these
languages have to be polyslender. In consequence of Theorem 3.5, they are
finite unions of multiple loop languages. Hence, for every a ∈ X∪{λ} there
are words ui,j, vi,k ∈ X∗, i = 1, . . . ,m, j = 1, . . . ,mi + 1, k = 1, . . . ,mi
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such that,

{papR : p ∈ L(a)}

=
m⋃

i=1

{ui,1v
ni,1

i,1 ui,2v
ni,2

i,2 . . .ui,miv
ni,mi
i,mi

ui,mi+1auR
i,mi+1(v

R
i,mi

)ni,mi . . .

. . . uR
i,3(v

R
i,2)

ni,2uR
i,2(v

R
i,1)

ni,1uR
i,1 : ni,k ≥ 0, k = 1, . . . ,mi}.

The proof is complete. �
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