Oscillation and nonoscillation of solutions for second order linear differential equations

By HUEI-LIN HONG (Tauyuan) CHEH-CHIH YEH (Tauyuan), HORNG-JAAN LI (Chang-Hua) and HSIANG-BIN HSU (Tauyuan City)

Abstract

Oscillation and nonoscillation criteria are established for the second order linear differential equation $$
\left[p(t) x^{\prime}(t)\right]^{\prime}+q(t) x(t)=0, \quad t \geq t_{0}
$$ under the hypothesis that $p(t)>0$ and $$
\int^{\infty} \frac{d t}{a(t) p(t)}=\infty
$$ where $a(t) \in C^{2}\left(\left[t_{0}, \infty\right) ;(0, \infty)\right)$ is given. These results improve some oscillation criteria of Hille, Wintner and Opial.

1. Introduction

In this paper, we consider the second order linear differential equation

$$
\begin{equation*}
\left[p(t) x^{\prime}(t)\right]^{\prime}+q(t) x(t)=0 \tag{E}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[p_{1}(t) x^{\prime}(t)\right]^{\prime}+q_{1}(t) x(t)=0 \tag{1}
\end{equation*}
$$

where $p(t), p_{1}(t) \in C^{1}\left(\left[t_{0}, \infty\right),(0, \infty)\right)$ and $q(t), q_{1}(t) \in C\left(\left[t_{0}, \infty\right), \mathbb{R}\right)$ for some $t_{0} \geq 0$. Suppose that there exist two functions $a(t), a_{1}(t) \in C^{2}\left(\left[t_{0}, \infty\right)\right.$; $(0, \infty))$ such that

$$
\int^{\infty} \frac{d t}{a(t) p(t)}=\infty \quad \text { and } \quad \int^{\infty} \frac{d t}{a_{1}(t) p_{1}(t)}=\infty
$$

A solution of (E) is oscillatory if it has arbitrarily large zeros, and otherwise it is nonoscillatory. Equation (E) is oscillatory if all its solutions are oscillatory, and nonoscillatory if all its solutions are nonoscillatory.

In 1984, Harris [3] improved the Leighton oscillation criterion [6] and the Sturm comparison theorem by using a generalized Riccati transformation

$$
v(t)=A(t) p(t)\left\{\frac{x^{\prime}(t)}{x(t)}+F(t)\right\}
$$

where $F \in C^{1}$ is a given function and $A(t)=\exp \left\{-2 \int^{t} F(s) d s\right\}$. The following two theorems are due to Harris [3] and Li and Yef [8], respectively.

Theorem A. If

$$
\int^{\infty} \frac{1}{A(t) p(t)} d t=\int^{\infty} A(t)\left\{q(t)+p(t) F^{2}(t)-[p(t) F(t)]^{\prime}\right\} d t=\infty
$$

then (E) is oscillatory.
Theorem B. Let $a \in C^{2}\left(\left[t_{0}, \infty\right),(0, \infty)\right)$ be a given function and $f(t)=-\frac{a^{\prime}(t)}{2 a(t)}$. Then equation (E) is oscillatory if and only if the equation

$$
\left[a(t) p(t) w^{\prime}(t)\right]^{\prime}+a(t)\left\{q(t)+p(t) f^{2}(t)-[p(t) f(t)]^{\prime}\right\} w(t)=0
$$

is oscillatory.
Moreover, Li and Yeh [8] obtained the following result:
Theorem C. Let $a \in C^{2}\left(\left[t_{0}, \infty\right),(0, \infty)\right)$ be a given function and $f(t)=-\frac{a^{\prime}(t)}{2 a(t)}$. If

$$
\int^{\infty} \frac{d t}{a(t) p(t)}=\int^{\infty} a(t)\left[q(t)+p(t) f^{2}(t)-(p(t) f(t))^{\prime}\right] d t=\infty
$$

then (E) is oscillatory.

It is clear that Theorem C cannot be applied under the condition

$$
\begin{equation*}
\phi(t):=\int_{t}^{\infty} \psi(s) d s<\infty \tag{0}
\end{equation*}
$$

where $\psi(s)=a(s)\left[q(s)+p(s) f(s)^{2}-(p(s) f(s))^{\prime}\right]$.
In 1987, YAN [16] gave some excellent oscillation criteria for equation

$$
\begin{equation*}
x^{\prime \prime}(t)+q(t) x(t)=0 \tag{2}
\end{equation*}
$$

which extended some oscillation criteria of Fite [1], Hille [2], Kamenev [4], Leighton [7], Opial [11], and Wintner [13]-[15]. The purpose of this paper is to establish a necessary and sufficient condition for the nonoscillatory criterion of (E) which is a natural extension of Theorem 2.1 in YAN [16]. Using this necessary and sufficient condition, we can extend the Hille-Wintner comparison theorem for equation of the form $\left(E_{2}\right)$ to equation of the type (E).

2. Nonoscillation and oscillation criteria for equation (E)

Throughout this paper, we let $f(t)=-\frac{a^{\prime}(t)}{2 a(t)}, f_{1}(t)=-\frac{a_{1}^{\prime}(t)}{2 a_{1}(t)}$, $\psi(t)=a(t)\left[q(t)+p(t) f(t)^{2}-(p(t) f(t))^{\prime}\right]$, $\psi_{1}(t)=a_{1}(t)\left[q_{1}(t)+p_{1}(t) f_{1}(t)^{2}-\left(p_{1}(t) f(t)\right)^{\prime}\right]$,

$$
\phi(t):=\int_{t}^{\infty} \psi(s) d s
$$

and

$$
\phi_{1}(t):=\int_{t}^{\infty} \psi_{1}(s) d s
$$

where $a(t), a_{1}(t) \in C^{2}\left(\left[t_{0}, \infty\right),(0, \infty)\right)$ are given. In other to prove our main results, we need the following lemma which is due to LI and YEH [9].

Lemma 1. Suppose that there exists a function $a(t) \in C^{2}\left(\left[t_{0}, \infty\right)\right.$; $(0, \infty))$ such that

$$
\int^{\infty} \frac{d t}{a(t) p(t)}=\infty
$$

and

$$
\phi(t):=\int_{t}^{\infty} \psi(s) d s<\infty \quad \text { for all } t \geq t_{0}
$$

then the following four statements are equivalent:
(i) Equation (E) is nonoscillatory.
(ii) There is a function $w \in C([T, \infty) ; \mathbb{R})$ for some $T \geq t_{0}$ such that

$$
\begin{equation*}
w(t)=\int_{t}^{\infty} \frac{w(s)^{2}}{a(s) p(s)} d s+\int_{t}^{\infty} \psi(s) d s \quad \text { for } t \geq T \tag{1}
\end{equation*}
$$

In particular, if $x(t)$ is a nonoscillatory solution of (1), then $w(t)$ can be taken as

$$
w(t)=\frac{a(t) p(t) x^{\prime}(t)}{x(t)}, \quad \text { for } t \geq T
$$

(iii) There is a function $v \in C([T, \infty) ; \mathbb{R})$ for some $T \geq t_{0}$ such that

$$
\begin{equation*}
|v(t)| \geq\left|\int_{t}^{\infty} \frac{v(s)^{2}}{a(s) p(s)} d s+\int_{t}^{\infty} \psi(s) d s\right| \quad \text { for } t \geq T \tag{2}
\end{equation*}
$$

(iv) There is a function $u \in C^{1}([T, \infty) ; \mathbb{R})$ for some $T \geq t_{0}$ satisfying

$$
\begin{equation*}
u^{\prime}(t)+\psi(t)+\frac{u(t)^{2}}{a(t) p(t)} \leq 0 \quad \text { for } t \geq T \tag{3}
\end{equation*}
$$

Throughout this section we suppose that $\alpha_{0}(t) \in C\left(\left[t_{0}, \infty\right) ; \mathbb{R}\right)$ is a given function and $\left(C_{0}\right)$ holds. We define the function sequence

$$
\left\{\alpha_{n}(t)\right\}_{n=0}^{\infty}, \quad \text { for } t \geq t_{0}
$$

as follows (if it exists):

$$
\begin{equation*}
\alpha_{n}(t)=\int_{t}^{\infty} \frac{\alpha_{n-1}^{+}(s)^{2}}{a(s) p(s)} d s+\alpha_{0}(t), \quad n=1,2, \ldots \tag{1}
\end{equation*}
$$

where $\alpha^{+}(t)=\frac{1}{2}[\alpha(t)+|\alpha(t)|]$.
Clearly, $\alpha_{1}(t) \geq \alpha_{0}(t)$ and this implies that $\alpha_{1}^{+}(t) \geq \alpha_{0}^{+}(t)$. By induction,

$$
\begin{equation*}
\alpha_{n+1}(t) \geq \alpha_{n}(t), \quad n=1,2, \ldots . \tag{2}
\end{equation*}
$$

That is, the function sequence $\left\{\alpha_{n}(t)\right\}$ is nondecreasing on $\left[t_{0}, \infty\right)$.

Theorem 2. Suppose that $\alpha_{0}(t) \leq \phi(t)$. If equation (E) is nonoscillatory, then there exists $t_{1} \geq t_{0}$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \alpha_{n}(t):=\alpha(t)<\infty \quad \text { for } t \geq t_{1} \tag{3}
\end{equation*}
$$

Proof. Suppose that (E) is nonoscillatory. Thus, it follows from Lemma 1 that there exists $w \in C\left[t_{1}, \infty\right)$ such that

$$
w(t)=\int_{t}^{\infty} \frac{w(s)^{2}}{a(s) p(s)} d s+\int_{t}^{\infty} \psi(s) d s
$$

on $\left[t_{1}, \infty\right)$ for some $t_{1} \geq t_{0}$. Thus, $w(t) \geq \alpha_{0}(t)$, and hence $w^{+}(t) \geq \alpha_{0}^{+}(t)$ for $t \geq t_{1}$. This implies

$$
\begin{aligned}
w(t) & =\int_{t}^{\infty} \frac{w(s)^{2}}{a(s) p(s)} d s+\int_{t}^{\infty} \psi(s) d s \\
& \geq \int_{t}^{\infty} \frac{w^{+}(s)^{2}}{a(s) p(s)} d s+\alpha_{0}(t) \geq \int_{t}^{\infty} \frac{\alpha_{0}^{+}(s)^{2}}{a(s) p(s)} d s+\alpha_{0}(t) \\
& =\alpha_{1}(t) \quad \text { for } t \geq t_{1}
\end{aligned}
$$

By induction,

$$
\begin{equation*}
w(t) \geq \alpha_{n}(t), \quad n=0,1,2, \ldots, t \in\left[t_{1}, \infty\right) \tag{4}
\end{equation*}
$$

It follows from (2) and (4) that the function sequence $\left\{\alpha_{n}(t)\right\}$ is bounded above on $\left[t_{1}, \infty\right)$. Hence (3) holds.

Corollary 3. Suppose that $\alpha_{0}(t) \leq \phi(t)$. If either
(i) there exists a positive integer m such that $\alpha_{n}(t)$ is defined for
$n=1,2, \ldots, m-1$, but $\alpha_{m}(t)$ does not exist; or
(ii) $\alpha_{n}(t)$ is defined for $n=1,2, \ldots$, but for arbitrarily large $T^{*} \geq t_{0}$, there is $t^{*} \geq T^{*}$ such that

$$
\lim _{n \rightarrow \infty} \alpha_{n}\left(t^{*}\right)=\infty
$$

then equation (E) is oscillatory.
Theorem 4. Suppose that $\alpha_{0}(t) \geq|\phi(t)|$. If there exists $t_{1} \geq t_{0}$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \alpha_{n}(t)=\alpha(t)<\infty \quad \text { for } t \geq t_{1} \tag{5}
\end{equation*}
$$

then equation (E) is nonoscillatory.

Proof. If (5) holds, then it follows from (2) and (5) that

$$
\alpha_{n}(t) \leq \alpha(t), \quad n=0,1,2, \ldots, \quad \text { for } t \geq t_{1}
$$

Applying the monotone convergence theorem,

$$
\alpha(t)=\int_{t}^{\infty} \frac{\alpha^{+}(s)^{2}}{a(s) p(s)} d s+\alpha_{0}(t)(\geq 0), \quad \text { for } t \geq t_{1}
$$

Thus,

$$
\begin{aligned}
\alpha^{+}(t)=\alpha(t) & =\int_{t}^{\infty} \frac{\alpha^{+}(s)^{2}}{a(s) p(s)} d s+\alpha_{0}(t) \\
& \geq \int_{t}^{\infty} \frac{\alpha^{+}(s)^{2}}{a(s) p(s)} d s+|\phi(t)| \\
& \geq\left|\int_{t}^{\infty} \frac{\alpha^{+}(s)^{2}}{a(s) p(s)} d s+\phi(t)\right| \quad \text { for } t \geq t_{1}
\end{aligned}
$$

It follows from Lemma 1 that (E) is nonoscillatory. Thus, our proof is complete.

Corollary 5. Suppose that $\alpha_{0}(t) \geq|\phi(t)|$. If (E) is oscillatory, then either
(i) there exists a positive integer m such that $\alpha_{n}(t)$ is defined for $n=1,2, \ldots, m-1$, but $\alpha_{m}(t)$ does not exist; or
(ii) $\alpha_{n}(t)$ is defined for $n=1,2, \ldots$, but, for arbitrarily large $T^{*} \geq t_{0}$, there is $t^{*} \geq T^{*}$ such that

$$
\lim _{n \rightarrow \infty} \alpha_{n}\left(t^{*}\right)=\infty
$$

If $\phi(t) \geq 0$, then it follows from Theorems 2 and 4 that we have the following two corollaries.

Corollary 6. Suppose that $\alpha_{0}(t)=\phi(t) \geq 0$. Then (E) is nonoscillatory if and only if there exists $t_{1} \geq t_{0}$ such that

$$
\lim _{n \rightarrow \infty} \alpha_{n}(t)=\alpha(t)<\infty \quad \text { for } t \geq t_{1}
$$

Corollary 7. Suppose that $\alpha_{0}(t)=\phi(t) \geq 0$. Then $\left(E_{1}\right)$ is oscillatory if and only if either
(i) there exists a positive integer m such that $\alpha_{n}(t)$ is defined for $n=1,2, \ldots, m-1$, but $\alpha_{m}(t)$ does not exist; or
(ii) $\alpha_{n}(t)$ is defined for $n=1,2, \ldots$, but, for arbitrarily large $T^{*} \geq t_{0}$, there is $t^{*} \geq T^{*}$ such that

$$
\lim _{n \rightarrow \infty} \alpha_{n}\left(t^{*}\right)=\infty
$$

Remark 1. For $a(t)=1$, Corollaries 6 and 7 reduce to Theorems 2.1 and 2.2 in Yan [16], respectively.

Theorem 8. If there exists a function $B(t) \in C\left(\left[t_{1}, \infty\right) ; \mathbb{R}\right)$ for some $t_{1} \geq t_{0}$ such that

$$
\begin{equation*}
|\phi(t)|+\int_{t}^{\infty} \frac{B^{+}(s)^{2}}{a(s) p(s)} d s \leq B^{+}(t) \quad \text { for } t \geq t_{1} \tag{6}
\end{equation*}
$$

then equation (E) is nonoscillatory.
Proof. Let $\alpha_{0}(t)=|\phi(t)|$. Then, by (6), $0 \leq \alpha_{0}(t) \leq B^{+}(t)$ for $t \geq t_{1}$. Thus

$$
\begin{aligned}
\alpha_{1}(t) & =\int_{t}^{\infty} \frac{\alpha_{0}^{+}(s)^{2}}{a(s) p(s)} d s+\alpha_{0}(t) \\
& \leq \int_{t}^{\infty} \frac{B^{+}(s)^{2}}{a(s) p(s)} d s+|\phi(t)| \\
& \leq B^{+}(t) \quad \text { for } t \geq t_{1} .
\end{aligned}
$$

By induction,

$$
\alpha_{n}(t) \leq B^{+}(t), \quad n=0,1,2, \ldots, t \in\left[t_{1}, \infty\right) .
$$

This and (2) imply that (5) holds. Thus, it follows from Theorem 4 that (E) is nonoscillatory.

Taking $B(t)=2|\phi(t)|$ in the above theorem, we obtain the following corollary which improves a result of Wintner [14].

Corollary 9. If

$$
\int_{t}^{\infty} \frac{\phi(s)^{2}}{a(s) p(s)} d s \leq \frac{|\phi(t)|}{4}
$$

then equation (E) is nonoscillatory.
Theorem 10. Suppose that there exists a function $B(t) \in C\left(\left[t_{0}, \infty\right) ; \mathbb{R}\right)$ with the property that for arbitrarily large $T^{*} \geq t_{0}$, there is $t^{*} \geq T^{*}$ such that $B\left(t^{*}\right)>0$. If

$$
\begin{equation*}
B(t) \leq \phi(t) \text { and } k B(t) \leq \int_{t}^{\infty} \frac{B^{+}(s)^{2}}{a(s) p(s)} d s \quad \text { for all sufficient large } t \tag{7}
\end{equation*}
$$

where $k>\frac{1}{4}$ is a constant, then equation (E) is oscillatory.
Proof. Let $\alpha_{0}(t)=\phi(t)$. This and (7) imply that $\alpha_{0}^{+}(t)=\phi^{+}(t) \geq$ $B^{+}(t)$ on $\left[t_{1}, \infty\right)$ for some $t_{1} \geq t_{0}$. Thus

$$
\begin{aligned}
\alpha_{1}(t) & =\int_{t}^{\infty} \frac{\alpha_{0}^{+}(s)^{2}}{a(s) p(s)} d s+\alpha_{0}(t) \geq \int_{t}^{\infty} \frac{B^{+}(s)^{2}}{a(s) p(s)} d s+B(t) \\
& \geq(k+1) B(t):=C_{1} B(t), \quad \text { where } C_{1}=k+1
\end{aligned}
$$

By induction,

$$
\begin{gather*}
\alpha_{n}(t) \geq C_{n} B(t) \quad \text { for } t \in\left[t_{1}, \infty\right) \\
\text { where } C_{n}=1+k C_{n-1}^{2}, n=1,2, \ldots \tag{8}
\end{gather*}
$$

Clearly, $C_{n}>C_{n-1}, n=1,2,3, \ldots$. Now we show that $\lim _{n \rightarrow \infty} C_{n}=\infty$. Suppose the increasing sequence $\left\{C_{n}\right\}$ is bounded above. Hence, $\lim _{n \rightarrow \infty} C_{n}$ exists, say, $\lim _{n \rightarrow \infty} C_{n}=\beta \in \mathbb{R}$. From $C_{n}=1+k C_{n-1}^{2}$,

$$
\begin{equation*}
\beta=1+k \beta^{2} . \tag{9}
\end{equation*}
$$

Since $k>\frac{1}{4}$, the equation (9) has no real root. This contradiction proves that $\lim _{n \rightarrow \infty} C_{n}=\infty$. This and (8) imply that

$$
\lim _{n \rightarrow \infty} \alpha_{n}\left(t^{*}\right)=\infty
$$

where $t^{*} \geq t_{1}$ satisfies $B\left(t^{*}\right)>0$. Thus, it follows from Corollary 3 that (E) is oscillatory.

Taking $B(t)=\phi(t)$ in the above theorem, we obtain the following corollary which improves an Opial's result [11].

Corollary 11. Suppose that for arbitrarily large $T^{*} \geq t_{0}$, there is $t^{*} \geq T^{*}$ such that $\phi\left(t^{*}\right)>0$. If there exists $\epsilon>0$ such that

$$
\int_{t}^{\infty} \frac{\phi^{+}(s)^{2}}{a(s) p(s)} d s \geq \frac{(1+\epsilon)}{4} \phi(t) \quad \text { for all sufficient large } t
$$

then equation (E) is oscillatory.
Remark 2. Yan [16] proved Corollaies 9 and 11 under the stronger condition: $P(t):=\int_{t}^{\infty} p(s) d s \geq 0$.

Corollary 12. Suppose that $\alpha_{0}(t) \leq \phi(t)$. Let $\pi(t) \in C^{1}\left(\left[t_{0}, \infty\right),(0, \infty)\right)$ satisfy $\pi^{\prime}(t)=\frac{1}{a(t) p(t)}$. If one of the following conditions is satisfied:
(i) $\alpha_{0}(t) \geq \frac{C_{0}}{\pi(t)}$ forsufficiently large t,
(ii) $\int_{t}^{\infty} \frac{\alpha_{0}^{+}(s)^{2}}{a(s) p(s)} d s \geq C_{0} \alpha_{0}(t)$ for $t \geq t_{0}$,
(iii) $\lim _{t \rightarrow \infty} \alpha_{0}(t) \geq 0$, and $\alpha_{0}^{\prime}(t) \leq-\frac{C_{0}}{a(t) p(t) \pi(t)^{2}}$ for sufficiently large t, where $C_{0}>\frac{1}{4}$ is a constant, then (E) is oscillatory.

Proof. If (i) is satisfied, then

$$
\begin{aligned}
\alpha_{1}(t) & =\int_{t}^{\infty} \frac{\alpha_{0}^{+}(s)^{2}}{a(s) p(s)} d s+\alpha_{0}(t) \geq \int_{t}^{\infty} \frac{C_{0}^{2}}{a(s) p(s) \pi(t)^{2}} d s+\alpha_{0}(t) \\
& =\frac{C_{0}^{2}}{\pi(t)}+\alpha_{0}(t) \geq \frac{C_{0}^{2}}{\pi(t)}+\frac{C_{0}}{\pi(t)}=\frac{C_{1}}{\pi(t)},
\end{aligned}
$$

where $C_{1}=C_{0}^{2}+C_{0}$. Thus, by induction,

$$
\begin{equation*}
\alpha_{n}(t) \geq \frac{C_{n}}{\pi(t)}, \tag{10}
\end{equation*}
$$

where $n=1,2, \ldots$, and $C_{n}=C_{n-1}^{2}+C_{0}$. It is easy to see that $C_{n}>$ $C_{n-1}, n=1,2, \ldots$. Now we show that $\lim _{n \rightarrow \infty} C_{n}=\infty$. Suppose the increasing sequence $\left\{C_{n}\right\}$ is bounded above. Hence, $\lim _{n \rightarrow \infty} C_{n}$ exists, say, $\lim _{n \rightarrow \infty} C_{n}=\beta \in \mathbb{R}$. From $C_{n}=C_{n-1}^{2}+C_{0}$,

$$
\begin{equation*}
\beta=\beta^{2}+C_{0} . \tag{11}
\end{equation*}
$$

Since $C_{0}>\frac{1}{4}$, the equation (11) has no real root. This contradiction proves that $\lim _{n \rightarrow \infty} C_{n}=\infty$. Thus, it follows from (10) that

$$
\lim _{n \rightarrow \infty} \alpha_{n}(t)=\infty, \quad t \in\left[t_{0}, \infty\right) .
$$

Thus, by (ii) of Corollary $3,(E)$ is oscillatory.
If (ii) is satisfied, then (E) is oscillatory by taking $B(t)=\alpha_{0}(t)$ in Theorem 10.

Finally, if (iii) is satisfied, then

$$
\begin{aligned}
-\alpha_{0}(t) & \leq \int_{t}^{\infty} \alpha_{0}^{\prime}(s) d s \\
& \leq-C_{0} \int_{t}^{\infty} \frac{1}{a(s) p(s) \pi(s)^{2}} d s=-\frac{C_{0}}{\pi(t)}
\end{aligned}
$$

Hence, (i) is satisfied, and hence (E) is oscillatory.
Next we consider equation $\left(E_{1}\right)$. Suppose that $\beta_{0}(t) \in C\left(\left[t_{0}, \infty\right) ; \mathbb{R}\right)$ is a given function. Similarly, we define the function sequence

$$
\left\{\beta_{n}(t)\right\}_{n=0}^{\infty}, \quad \text { for } t \geq t_{0}
$$

as follows (if it exists):

$$
\begin{equation*}
\beta_{n}(t)=\int_{t}^{\infty} \frac{\beta_{n-1}^{+}(s)^{2}}{a(s) p(s)} d s+\beta_{0}(t), \quad n=1,2, \ldots \tag{12}
\end{equation*}
$$

Clearly, $\beta_{1}(t) \geq \beta_{0}(t)$ and this implies that $\beta_{1}^{+}(t) \geq \beta_{0}^{+}(t)$. By induction,

$$
\begin{equation*}
\beta_{n+1}(t) \geq \beta_{n}(t), \quad n=1,2, \ldots . \tag{13}
\end{equation*}
$$

That is, the function sequence $\left\{\beta_{n}(t)\right\}$ defined in (12) is nondecreasing on $\left[t_{0}, \infty\right)$.

Using Theorems 2 and 4, we can give another proof of the following Hille-Wintner comparison theorem which is due to Li and Yef [9].

Theorem 13. Assume that

$$
\begin{equation*}
0<a(t) p(t) \leq a_{1}(t) p_{1}(t),\left|\phi_{1}(t)\right| \leq \phi(t) \text { for all sufficiently large } t . \tag{14}
\end{equation*}
$$

If (E) is nonoscillatory, then $\left(E_{1}\right)$ is nonoscillatory; or equivalently, if $\left(E_{1}\right)$ is oscillatory, then also (E) is oscillatory.

Proof. Let $\alpha_{0}(t)=\phi(t), \beta_{0}(t)=\left|\phi_{1}(t)\right|$. Suppose that (E) is nonoscillatory. It follows from Theorem 2 that there exists $t_{1} \geq t_{0}$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \alpha_{n}(t):=\alpha(t)<\infty \quad \text { for } t \geq t_{1} \tag{15}
\end{equation*}
$$

Clearly, by (14),

$$
\beta_{0}(t)=\left|\phi_{1}(t)\right| \leq \phi(t)=\alpha_{0}(t)
$$

and hence $\beta_{0}^{+}(t) \leq \alpha_{0}^{+}(t)$ for $t \geq t_{1}$. This and (14) imply that, for $t \geq t_{1}$,

$$
\begin{aligned}
\beta_{1}(t) & =\int_{t}^{\infty} \frac{\beta_{0}^{+}(s)^{2}}{a_{1}(s) p_{1}(s)} d s+\beta_{0}(t) \\
& \leq \int_{t}^{\infty} \frac{\alpha_{0}^{+}(s)^{2}}{a(s) p(s)} d s+\alpha_{0}(t)=\alpha_{1}(t)
\end{aligned}
$$

By induction,

$$
\begin{equation*}
\beta_{n}(t) \leq \alpha_{n}(t), \quad n=0,1,2, \ldots, t \in\left[t_{1}, \infty\right) . \tag{16}
\end{equation*}
$$

Therefore, by (13), (15) and (16),

$$
\beta(t):=\lim _{n \rightarrow \infty} \beta_{n}(t) \leq \lim _{n \rightarrow \infty} \alpha_{n}(t)=\alpha(t)<\infty, t \in\left[t_{1}, \infty\right)
$$

Thus, by Theorem 4, $\left(E_{1}\right)$ is nonoscillatory. Hence, the proof is complete.

Theorem 14. Suppose that $\alpha_{0}(t) \leq \phi(t)$. If equation (E) is nonoscillatory, then

$$
\begin{equation*}
\limsup _{t \rightarrow \infty}[\alpha(t)-\phi(t)] \exp \left(4 \int^{t} \frac{\phi^{+}(s)}{a(s) p(s)} d s\right)<\infty \tag{17}
\end{equation*}
$$

where $\alpha(t)$ satisfies (3).
Proof. Assume that (E) is nonoscillatory, then $\left(E_{a}\right)$ is nonoscillatory. Let $w(t)$ be a solution of $\left(E_{a}\right)$ and

$$
v(t)=\frac{a(t) p(t) w^{\prime}(t)}{w(t)} .
$$

It follows from Lemma 1 that

$$
v(t)=u(t)+\phi(t), \quad \text { for } t \geq t_{1} \geq t_{0}
$$

where $u(t)=\int_{t}^{\infty} \frac{v(s)^{2}}{a(s) p(s)} d s$. Then

$$
u^{\prime}(t)=-\frac{v(t)^{2}}{a(t) p(t)}=-\frac{(u(t)+\phi(t))^{2}}{a(t) p(t)} \leq 0 .
$$

We claim that

$$
\begin{equation*}
u^{\prime}(t)+4 \frac{\phi^{+}(t)}{a(t) p(t)} u(t) \leq 0 . \tag{18}
\end{equation*}
$$

Since $u(t)>0$ and $u^{\prime}(t) \leq 0$, then (18) holds if $\phi(t) \leq 0$. If $\phi(t) \geq 0$, then $(u(t)+\phi(t))^{2} \geq 4 \phi^{+}(t) u(t)$. This implies that (18) holds. Clearly, (18) implies that

$$
\begin{equation*}
u(t) \leq u\left(t_{1}\right) \exp \left(-4 \int_{t_{1}}^{t} \frac{\phi^{+}(s)}{a(s) p(s)} d s\right) \quad \text { for } t \geq t_{1} . \tag{19}
\end{equation*}
$$

On the other hand, we have $v(t)=u(t)+\phi(t) \geq \phi(t) \geq \alpha_{0}(t)$, thus

$$
u(t)=\int_{t}^{\infty} \frac{v(s)^{2}}{a(s) p(s)} d s \geq \int_{t}^{\infty} \frac{\alpha_{0}^{+}(s)^{2}}{a(s) p(s)} d s
$$

This implies that

$$
v(t)=u(t)+\phi(t) \geq \int_{t}^{\infty} \frac{\alpha_{0}^{+}(s)^{2}}{a(s) p(s)} d s+\alpha_{0}(t)=\alpha_{1}(t) \quad \text { for } t \geq t_{1}
$$

By induction,

$$
\begin{equation*}
v(t)=u(t)+\phi(t) \geq \alpha_{n}(t), \quad n=0,1,2, \ldots, t \in\left[t_{1}, \infty\right) . \tag{20}
\end{equation*}
$$

Therefore, (19) and (20) imply that

$$
\alpha_{n}(t)-\phi(t) \leq u(t) \leq u\left(t_{1}\right) \exp \left(-4 \int_{t_{1}}^{t} \frac{\phi^{+}(s)}{a(s) p(s)} d s\right),
$$

and hence

$$
\left[\alpha_{n}(t)-\phi(t)\right] \exp \left(4 \int_{t_{1}}^{t} \frac{\phi^{+}(s)}{a(s) p(s)} d s\right) \leq u\left(t_{1}\right), \quad n=0,1,2, \ldots, t \in\left[t_{1}, \infty\right) .
$$

This and (3) imply that

$$
\begin{gathered}
\exp \left(4 \int_{t_{1}}^{t} \frac{\phi^{+}(s)}{a(s) p(s)} d s\right) \\
=\lim _{n \rightarrow \infty}\left[\alpha_{n}(t)-\phi(t)\right] \exp \left(4 \int_{t_{1}}^{t} \frac{\phi^{+}(s)}{a(s) p(s)} d s\right) \leq u\left(t_{1}\right), \quad t \in\left[t_{1}, \infty\right) .
\end{gathered}
$$

This implies that (17) holds. Thus we complete this proof.
Corollary 15. Suppose that $\alpha_{0}(t) \leq \phi(t)$. If either
(i) $\alpha_{n}(t)$ exists for $n=1,2, \ldots, m$, and

$$
\limsup _{t \rightarrow \infty}\left[\alpha_{m}(t)-\phi(t)\right] \exp \left(4 \int^{t} \frac{\phi^{+}(s)}{a(s) p(s)} d s\right)=\infty ; \text { or }
$$

(ii) (3) holds and

$$
\limsup _{t \rightarrow \infty}[\alpha(t)-\phi(t)] \exp \left(4 \int^{t} \frac{\phi^{+}(s)}{a(s) p(s)} d s\right)=\infty
$$

then equation (E) is oscillatory.
Theorem 16. Suppose that $\alpha_{0}(t) \leq \phi(t)$. If

$$
\begin{equation*}
\int^{\infty} \exp \left(-4 \int^{s} \frac{\phi^{+}(u)}{a(u) p(u)} d u\right) d s<\infty, \quad \int^{\infty} \phi(s) d s<\infty \tag{21}
\end{equation*}
$$

and there exists a nonnegative integer m such that

$$
\begin{equation*}
\int^{\infty} \alpha_{m}(s) d s=\infty \tag{22}
\end{equation*}
$$

then (E) is oscillatory.
Proof. Assume that (E) is nonoscillatory, then (1) is nonoscillatory. Let $w(t)$ be a solution of (1) and

$$
v(t)=\frac{a(t) p(t) w^{\prime}(t)}{w(t)}
$$

As the proof of Theorem 14, we obtain that

$$
\begin{align*}
\alpha_{n}(t)-\phi(t) & \leq u\left(t_{1}\right) \exp \left(-4 \int_{t_{1}}^{t} \frac{\phi^{+}(s)}{a(s) p(s)} d s\right), \tag{23}\\
n & =0,1,2, \ldots, t \in\left[t_{1}, \infty\right)
\end{align*}
$$

Integrating (23) from t_{1} to t and let $t \rightarrow \infty$, we have

$$
\int_{t_{1}}^{\infty} \alpha_{n}(s) d s \leq u\left(t_{1}\right) \int_{t_{1}}^{\infty} \exp \left(-4 \int_{t_{1}}^{s} \frac{\phi^{+}(u)}{a(u) p(u)} d u\right) d s+\int_{t_{1}}^{\infty} \phi(s) d s
$$

Noting (21) and (22), we get a condradiction.
Hence (E) is oscillatory.

Remark 3. For the oscillatory criteria of (E) adopting coefficients p and q only, we refer to LEE, YEH and GAU [10].

3. Examples

Example 1. Consider the following differential equation

$$
\begin{equation*}
x^{\prime \prime}(t)+\left(\frac{1}{t^{3}}+\frac{1}{4 t^{2}}\right) x(t)=0 \tag{3}
\end{equation*}
$$

We take that $p(t)=1, q(t)=\frac{1}{t^{3}}+\frac{1}{4 t^{2}}$ and $a(t)=t$. Thus, $f(t)=-\frac{a^{\prime}(t)}{2 a(t)}=$ $-\frac{1}{2 t}$ and $\psi(t)=a(t)\left[q(t)+p(t) f^{2}(t)-(p(t) f(t))^{\prime}\right]=\frac{1}{t^{2}}$ and

$$
\phi(t)=\int_{t}^{\infty} \psi(s) d s=\int_{t}^{\infty} \frac{1}{s^{2}} d s=\frac{1}{t}<\infty
$$

Next, we let $\alpha_{0}(t)=\phi(t)=\frac{1}{t}$ and define

$$
\alpha_{n}(t)=\int_{t}^{\infty} \frac{\alpha_{n-1}^{+}(s)^{2}}{a(s) p(s)} d s+\alpha_{0}(t), \quad n=1,2, \ldots
$$

where $\alpha^{+}(t)=\frac{1}{2}[\alpha(t)+|\alpha(t)|]$. Therefore,

$$
\begin{aligned}
& \alpha_{1}(t)=\int_{t}^{\infty} \frac{\frac{1}{s^{2}}}{s} d s+\frac{1}{t}=\frac{1}{2 t^{2}}+\frac{1}{t} \\
& \alpha_{2}(t)=\int_{t}^{\infty} \frac{\left(\frac{1}{2 s^{2}}+\frac{1}{s}\right)^{2}}{s} d s+\frac{1}{t}=\frac{1}{16 t^{4}}+\frac{1}{3 t^{3}}+\frac{1}{2 t^{2}}+\frac{1}{t}
\end{aligned}
$$

and

$$
\alpha_{3}(t)=\frac{1}{2048 t^{8}}+\frac{1}{168 t^{7}}+\frac{25}{864 t^{6}}+\frac{11}{120 t^{5}}+\frac{11}{48 t^{4}}+\frac{1}{3 t^{3}}+\frac{1}{2 t^{2}}+\frac{1}{t}
$$

It is clearly that, for t sufficiently large,

$$
1>\alpha_{n+1}(t) \geq \alpha_{n}(t), \quad n=1,2, \ldots
$$

and there exist $t_{1} \geq t_{0}$ and function $\alpha(t)$ such that

$$
\lim _{n \rightarrow \infty} \alpha_{n}(t)=\alpha(t), \quad \text { for } t \geq t_{1}
$$

Hence, it follows from Theorem 4 that $\left(E_{3}\right)$ is nonoscillatory.

Example 2. Consider the equation $\left(E_{3}\right)$ and let $B(t)=\frac{2}{t}$. We also have $p(t)=1, a(t)=t$ and $\phi(t)=\frac{1}{t}$. Then,

$$
|\phi(t)|+\int_{t}^{\infty} \frac{B^{+}(s)^{2}}{a(s) p(s)} d s=\frac{1}{t}+\int_{t}^{\infty} \frac{4}{s^{3}} d s=\frac{1}{t}+\frac{2}{t^{2}} \leq \frac{2}{t}
$$

for t sufficiently large. Hence, it follows from Theorem 8 that $\left(E_{3}\right)$ is nonoscillatory.

Example 3. Consider (E_{3}) and the following differential equation

$$
\begin{equation*}
\left(t x^{\prime}(t)\right)^{\prime}+\frac{1}{t^{2}} x(t)=0 \tag{4}
\end{equation*}
$$

We take that $p(t), q(t), a(t), \phi(t)$ and $\phi(t)$ are the same as in Example 1 and $p_{1}(t)=t, q_{1}(t)=\frac{1}{t^{2}}, a_{1}(t)=1$. Thus, $f_{1}(t)=-\frac{a_{1}^{\prime}(t)}{2 a_{1}(t)}=0, \psi_{1}(t)=$ $a_{1}(t)\left[q_{1}(t)+p_{1}(t) f_{1}^{2}(t)-\left(p_{1}(t) f_{1}(t)\right)^{\prime}\right]=\frac{1}{t^{2}}$ and

$$
\phi_{1}(t)=\int_{t}^{\infty} \psi_{1}(s) d s=\frac{1}{t}<\infty .
$$

Thus,

$$
0<a(t) p(t) \leq a_{1}(t) p_{1}(t), \quad|\phi(t)| \leq \phi_{1}(t)
$$

for t sufficiently large. Since $\left(E_{3}\right)$ is nonoscillatory, it follows from Theorem 14 that $\left(E_{4}\right)$ is nonoscillatory.

Example 4. Consider the following differential equation

$$
\begin{equation*}
x^{\prime \prime}(t)+\left(\frac{\alpha \sin \beta t}{t^{\gamma}}+\frac{\mu}{t^{2}}\right) x(t)=0 \tag{5}
\end{equation*}
$$

where $\alpha, \beta \neq 0, \gamma>0$ and $\mu \in \mathbb{R}$ are constants. Let

$$
a(t)=t^{-2 \lambda} \exp \left(-\frac{2 \alpha}{\beta} \int_{t}^{\infty} \frac{\cos \beta s}{s^{\gamma}} d s\right)
$$

where $\lambda>\max \left\{-\frac{1}{2}, \frac{1-2 \gamma}{2}\right\}$. Then

$$
a(t)=t^{-2 \lambda}+O\left(t^{-2 \lambda-\gamma}\right), \quad f(t)=\frac{\lambda}{t}-\frac{\alpha \cos \beta t}{\beta t^{\gamma}}
$$

and

$$
\begin{aligned}
\psi(t)= & {\left[t^{-2 \lambda}+O\left(t^{-2 \lambda-\gamma}\right)\right] } \\
& \times\left[\frac{\lambda^{2}+\lambda+\mu}{t^{2}}+\frac{\alpha^{2}}{2 \beta^{2} t^{2 \gamma}}+\frac{\alpha^{2} \cos 2 \beta t}{2 \beta^{2} t^{2 \gamma}}-\frac{\alpha(2 \lambda+\gamma) \cos \beta t}{\beta t^{\gamma+1}}\right]
\end{aligned}
$$

We separtate into five cases.
Case (a). If $0<\gamma<1$, then

$$
\phi(t)=\frac{\alpha^{2}}{2 \beta^{2}(2 \lambda+2 \gamma-1)} t^{-2 \lambda-2 \gamma+1}+O\left(t^{-2 \lambda+m}\right)
$$

where $m=\max \{-1,1-3 \gamma\}$. Let $\lambda>\frac{3-4 \gamma}{2}$, then

$$
\begin{aligned}
\int_{t}^{\infty} \frac{\phi_{+}^{2}(s)}{a(s) p(s)} d s= & \frac{1}{4 \gamma+2 \lambda-3}\left(\frac{\alpha^{2}}{2 \beta^{2}(2 \lambda+2 \gamma-1)}\right) t^{-4 \gamma-2 \lambda+3} \\
& +O\left(t^{-4 \gamma-2 \lambda+3}\right) \geq \phi(t)
\end{aligned}
$$

for all sufficiently large t. By Corollary 11, equation (5) is oscillatory.
Case (b). If $\gamma=1$ and $\mu>\frac{1}{4}-\frac{\alpha^{2}}{2 \beta^{2}}$, then

$$
\phi(t)=\frac{2 \beta^{2}\left(\lambda^{2}+\lambda+\mu\right)+\alpha^{2}}{2 \beta^{2}(1+2 \lambda)} t^{-2 \lambda-1}+O\left(t^{-2 \lambda-2}\right)
$$

and hence

$$
\begin{aligned}
\int_{t}^{\infty} \frac{\phi_{+}^{2}(s)}{a(s) p(s)} d s & =\frac{1}{1+2 \lambda}\left[\frac{2 \beta^{2}\left(\lambda^{2}+\lambda+\mu\right)+\alpha^{2}}{2 \beta^{2}(1+2 \lambda)}\right]^{2} t^{-2 \lambda-1}+O\left(t^{-2 \lambda-2}\right) \\
& =\left[\frac{1}{4}+\frac{1}{(1+2 \lambda)^{2}}\left(\mu-\frac{1}{4}+\frac{\alpha^{2}}{2 \beta^{2}}\right)\right] \phi(t)+O\left(t^{-2 \lambda-2}\right)
\end{aligned}
$$

By Corollary 11, equation (5) is oscillatory.
Case (c). If $\gamma=1$ and $\mu \leq \frac{1}{4}-\frac{\alpha^{2}}{2 \beta^{2}}$, we let

$$
\lambda>-\frac{1}{2}+\sqrt{\frac{1}{4}-\left(\mu+\frac{\alpha^{2}}{2 \beta^{2}}\right)}
$$

then there exists a constant $\theta>0$ such that

$$
\phi(t) \leq \frac{2 \beta^{2}\left(\lambda^{2}+\lambda+\mu\right)+\alpha^{2}}{2 \beta^{2}(1+2 \lambda)} t^{-2 \lambda-1}+\theta t^{-2 \lambda-2} .
$$

Let

$$
B(t)=K t^{-2 \lambda-1}+M t^{-2 \lambda-2},
$$

where

$$
K=\frac{1+2 \lambda}{2}-\sqrt{\frac{1}{4}-\left(\mu+\frac{\alpha^{2}}{2 \beta^{2}}\right)}>0 \quad \text { and } \quad M>\frac{(1+\lambda) \theta}{1+\lambda-K}>0
$$

then

$$
\begin{aligned}
|\phi(t)|+\int_{t}^{\infty} \frac{B_{+}^{2}(s)}{a(s) p(s)} d s & \leq K t^{-2 \lambda-1}+\frac{(1+\lambda) \theta+K M}{1+\lambda} t^{-2 \lambda-2}+O\left(t^{-2 \lambda-3}\right) \\
& \leq K t^{-2 \lambda-1}+M t^{-2 \lambda-2}=B_{+}(t)
\end{aligned}
$$

By Theorem 8, equation (5) is oscillatory.
Case (d). If $\gamma>1$ and $\mu>\frac{1}{4}$, then

$$
\phi(t)=\frac{\lambda^{2}+\lambda+\mu}{1+2 \lambda} t^{-2 \lambda-1}+O\left(t^{-2 \lambda-h}\right),
$$

where

$$
h=\min \{\gamma+1,2 \gamma-1\} .
$$

Thus,

$$
\begin{aligned}
\int_{t}^{\infty} \frac{\phi_{+}^{2}(s)}{a(s) p(s)} d s & =\frac{1}{1+2 \lambda}\left(\frac{\lambda^{2}+\lambda+\mu}{1+2 \lambda}\right)^{2} t^{-2 \lambda-1}+O\left(t^{-2 \lambda-h}\right) \\
& =\left[\frac{1}{4}+\frac{1}{(1+2 \lambda)^{2}}\left(\mu-\frac{1}{4}\right)\right] \phi(t)+O\left(t^{-2 \lambda-h}\right) .
\end{aligned}
$$

By Corollary 11, equation (5) is oscillary.
Case (e). If $\gamma>1$ and $\mu \leq \frac{1}{4}$, we let

$$
\lambda>-\frac{1}{2}+\sqrt{\frac{1-\mu}{4}} \quad \text { and } \quad q=\min \{\gamma+2,2 \gamma\}>2,
$$

then
$\phi(t)=\frac{\lambda^{2}+\lambda+\mu}{1+2 \lambda} t^{-2 \lambda-1}+O\left(t^{-2 \lambda-q+1}\right) \leq \frac{\lambda^{2}+\lambda+\mu}{1+2 \lambda} t^{-2 \lambda-1}+\theta t^{-2 \lambda-q+1}$
for some constant $\theta>0$. Let

$$
B(t)=K^{*} t^{-2 \lambda-1}+M^{*} t^{-2 \lambda-q+1}
$$

where

$$
K^{*}=\frac{1+2 \lambda-\sqrt{1-4 \mu}}{2}>0 \quad \text { and } \quad M^{*}>\frac{(2 \lambda+q-1) \theta}{2 \lambda+q-1-2 K^{*}}>0
$$

then

$$
\begin{aligned}
|\phi(t)|+ & \int_{t}^{\infty} \frac{B_{+}^{2}(s)}{a(s) p(s)} d s \leq K^{*} t^{-2 \lambda-1}+\left(\theta+\frac{2 K^{*} M^{*}}{2 \lambda+q-1}\right) t^{-2 \lambda-q+1} \\
& +O\left(t^{-2 \lambda-2 q+3}\right) \leq K^{*} t^{-2 \lambda-1}+M^{*} t^{-2 \lambda-q+1}=B_{+}(t)
\end{aligned}
$$

By Theorem 8, equation (5) is oscillatory.

References

[1] W. B. Fite, Concerning the zeros of the solutions of certain differential equations, Trans. Amer. Math. Soc. 19 (1918), 341-352.
[2] E. Hille, Nonoscillation theorem, Trans. Amer. Math. Soc. 64 (1948), 234-252.
[3] B. J. Harris, On the oscillation of solutions of linear differential equations, Mathematika 31 (1984), 214-226.
[4] I. V. Kamenev, A specifically nonlinear Oscillation theorem, Differencialnye Uravnenija 9 (1973), 370-373.
[5] M. K. Kwong and A. Zettl, Integral inequalities and second order linear oscillation, J. Diff. Equs. 45 (1982), 16-33.
[6] W. Leighton, The detection of the oscillation of solutions of a second order linear differential equation, Duke J. Math. 17 (1950), 57-62.
[7] W. Leighton, On self-adjoint differential equations of second order, J. London Math. Soc. 27 (1952), 37-47.
[8] H. J. Li and C. C. Yeh, On the nonoscillatory behavior of solutions of a second order linear differential equation, Math. Nachr 182 (1996), 295-315.
[9] H. J. Li and C. C. Yeh, Oscillation and nonoscillation criteria for second order linear differential equations, Math. Nachr 194 (1998), 171-184.
[10] H. J. Li, C. C. Yeh and C. Y. Gau, Some oscillation theorems for second order linear differential equations, to appear in Czechoslovak Math. J.
[11] Z. Opial, Sur les integrales oscillantes de l'equation differentielle $u^{\prime \prime}(t)+f(t) u=0$, Ann. Polon. Math. 4 (1958), 308-313.
[12] C. A. Swanson, Comparison and Oscillation Theory of Linear Differential Equations, Academic Press, New York and London, 1968.
[13] A. Wintner, A criteria of oscillatory stabilty, Quart. Appl. Math. 7 (1949), 115-117.
[14] A. Wintner, On the non-existence of conjugate points, Amer. J. Math. 73 (1951), 368-380.
[15] A. Wintner, On the comparison theorem of Kneser-Hille, Math. Scand. 5 (1957), 255-260.
[16] J. Yan, Oscillation property for second order differential equations with an "integral small" coefficient, Acta Math. Sinica 30 (1987), 206-215.

HUEI-LIN HONG
DEPARTMENT OF INFORMATION MANAGEMENT
LUNGHWA UNIVERSITY OF SCIENCE AND TECHNOLOGY
KUEISHAN TAUYUAN
333 TAIWAN
REPUBLIC OF CHINA
E-mail: hong@mail.Ihu.edu.tw
CHEH-CHIH YEH
DEPARTMENT OF INFORMATION MANAGEMENT
LUNGHWA UNIVERSITY OF SCIENCE AND TECHNOLOGY
KUEISHAN TAUYUAN
333 TAIWAN
REPUBLIC OF CHINA
E-mail: ccyeh@mail.Ihu.edu.tw

HORNG-JAAN LI
GENERAL EDUCATION CENTER
CHIEN KUO INSTITUTE OF TECHNOLOGY
CHANG-HUA
500 TAIWAN
REPUBLIC OF CHINA

HSIANG-BIN HSU
NATIONAL YANG MING SENIOR HIGH SCHOOL
TAUYUAN CITY
330 TAIWAN
REPUBLIC OF CHINA
(Received February 5, 2002, revised November 24, 2003)

