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Oscillation and nonoscillation of solutions for second
order linear differential equations

By HUEI-LIN HONG (Tauyuan) CHEH-CHIH YEH (Tauyuan),
HORNG-JAAN LI (Chang-Hua) and HSIANG-BIN HSU (Tauyuan City)

Abstract. Oscillation and nonoscillation criteria are established for the sec-
ond order linear differential equation

[p(t)x′(t)]′ + q(t)x(t) = 0, t ≥ t0,

under the hypothesis that p(t) > 0 and∫ ∞ dt

a(t)p(t)
= ∞,

where a(t) ∈ C2([t0,∞); (0,∞)) is given. These results improve some oscillation
criteria of Hille, Wintner and Opial.

1. Introduction

In this paper, we consider the second order linear differential equation

[
p(t)x′(t)

]′+q(t)x(t) = 0 (E)

and [
p1(t)x′(t)

]′+q1(t)x(t) = 0, (E1)
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where p(t), p1(t) ∈ C1
(
[t0,∞), (0,∞)

)
and q(t), q1(t) ∈ C

(
[t0,∞),R

)
for

some t0 ≥ 0. Suppose that there exist two functions a(t), a1(t) ∈C2([t0,∞);
(0,∞)) such that∫ ∞ dt

a(t)p(t)
= ∞ and

∫ ∞ dt

a1(t)p1(t)
= ∞.

A solution of (E) is oscillatory if it has arbitrarily large zeros, and other-
wise it is nonoscillatory. Equation (E) is oscillatory if all its solutions are
oscillatory, and nonoscillatory if all its solutions are nonoscillatory.

In 1984, Harris [3] improved the Leighton oscillation criterion [6]
and the Sturm comparison theorem by using a generalized Riccati trans-
formation

v(t) = A(t)p(t)
{
x′(t)
x(t)

+ F (t)
}
,

where F ∈ C1 is a given function and A(t) = exp
{−2

∫ t
F (s)ds

}
. The

following two theorems are due to Harris [3] and Li and Yeh [8], respec-
tively.

Theorem A. If∫ ∞ 1
A(t)p(t)

dt =
∫ ∞

A(t)
{
q(t) + p(t)F 2(t) − [

p(t)F (t)
]′}
dt = ∞,

then (E) is oscillatory.

Theorem B. Let a ∈ C2([t0,∞), (0,∞)) be a given function and

f(t) = − a′(t)
2a(t) . Then equation (E) is oscillatory if and only if the equation

[a(t)p(t)w′(t)]′ + a(t)
{
q(t) + p(t)f2(t) − [p(t)f(t)]′

}
w(t) = 0

is oscillatory.

Moreover, Li and Yeh [8] obtained the following result:

Theorem C. Let a ∈ C2([t0,∞), (0,∞)) be a given function and

f(t) = − a′(t)
2a(t) . If∫ ∞ dt

a(t)p(t)
=

∫ ∞
a(t)

[
q(t) + p(t)f2(t) − (

p(t)f(t)
)′]
dt = ∞,

then (E) is oscillatory.



Oscillation criteria for linear differential equations 31

It is clear that Theorem C cannot be applied under the condition

φ(t) :=
∫ ∞

t
ψ(s) ds <∞, (C0)

where ψ(s) = a(s)[q(s) + p(s)f(s)2 − (p(s)f(s))′].
In 1987, Yan [16] gave some excellent oscillation criteria for equation

x′′(t) + q(t)x(t) = 0 (E2)

which extended some oscillation criteria of Fite [1], Hille [2], Kamenev

[4], Leighton [7], Opial [11], and Wintner [13]–[15]. The purpose of this
paper is to establish a necessary and sufficient condition for the nonoscil-
latory criterion of (E) which is a natural extension of Theorem 2.1 in
Yan [16]. Using this necessary and sufficient condition, we can extend
the Hille–Wintner comparison theorem for equation of the form (E2) to
equation of the type (E).

2. Nonoscillation and oscillation criteria
for equation (E)

Throughout this paper, we let f(t) = − a′(t)
2a(t) , f1(t) = − a′

1(t)
2a1(t) ,

ψ(t) = a(t)[q(t) + p(t)f(t)2 − (p(t)f(t))′],
ψ1(t) = a1(t)[q1(t) + p1(t)f1(t)2 − (p1(t)f(t))′],

φ(t) :=
∫ ∞

t
ψ(s) ds

and
φ1(t) :=

∫ ∞

t
ψ1(s) ds,

where a(t), a1(t) ∈ C2([t0,∞), (0,∞)) are given. In other to prove our
main results, we need the following lemma which is due to Li and Yeh [9].

Lemma 1. Suppose that there exists a function a(t) ∈ C2([t0,∞);
(0,∞)) such that ∫ ∞ dt

a(t)p(t)
= ∞
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and

φ(t) :=
∫ ∞

t
ψ(s) ds <∞ for all t ≥ t0,

then the following four statements are equivalent:

(i) Equation (E) is nonoscillatory.

(ii) There is a function w ∈ C([T,∞); R) for some T ≥ t0 such that

w(t) =
∫ ∞

t

w(s)2

a(s)p(s)
ds+

∫ ∞

t
ψ(s) ds for t ≥ T. (C1)

In particular, if x(t) is a nonoscillatory solution of (1), then w(t) can

be taken as

w(t) =
a(t)p(t)x′(t)

x(t)
, for t ≥ T.

(iii) There is a function v ∈ C([T,∞); R) for some T ≥ t0 such that

|v(t)| ≥
∣∣∣∣
∫ ∞

t

v(s)2

a(s)p(s)
ds +

∫ ∞

t
ψ(s) ds

∣∣∣∣ for t ≥ T. (C2)

(iv) There is a function u ∈ C1([T,∞); R) for some T ≥ t0 satisfying

u′(t) + ψ(t) +
u(t)2

a(t)p(t)
≤ 0 for t ≥ T. (C3)

Throughout this section we suppose that α0(t) ∈ C([t0,∞); R) is a
given function and (C0) holds. We define the function sequence

{αn(t)}∞n=0, for t ≥ t0,

as follows (if it exists):

αn(t) =
∫ ∞

t

α+
n−1(s)

2

a(s)p(s)
ds+ α0(t), n = 1, 2, . . . , (1)

where α+(t) = 1
2

[
α(t) + |α(t)|].

Clearly, α1(t) ≥ α0(t) and this implies that α+
1 (t) ≥ α+

0 (t). By induc-
tion,

αn+1(t) ≥ αn(t), n = 1, 2, . . . . (2)

That is, the function sequence {αn(t)} is nondecreasing on [t0,∞).
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Theorem 2. Suppose that α0(t) ≤ φ(t). If equation (E) is nonoscil-

latory, then there exists t1 ≥ t0 such that

lim
n→∞αn(t) := α(t) <∞ for t ≥ t1. (3)

Proof. Suppose that (E) is nonoscillatory. Thus, it follows from
Lemma 1 that there exists w ∈ C[t1,∞) such that

w(t) =
∫ ∞

t

w(s)2

a(s)p(s)
ds+

∫ ∞

t
ψ(s) ds

on [t1,∞) for some t1 ≥ t0. Thus, w(t) ≥ α0(t), and hence w+(t) ≥ α+
0 (t)

for t ≥ t1. This implies

w(t) =
∫ ∞

t

w(s)2

a(s)p(s)
ds+

∫ ∞

t
ψ(s) ds

≥
∫ ∞

t

w+(s)2

a(s)p(s)
ds+ α0(t) ≥

∫ ∞

t

α+
0 (s)2

a(s)p(s)
ds+ α0(t)

= α1(t) for t ≥ t1.

By induction,

w(t) ≥ αn(t), n = 0, 1, 2, . . . , t ∈ [t1,∞). (4)

It follows from (2) and (4) that the function sequence {αn(t)} is bounded
above on [t1,∞). Hence (3) holds. �

Corollary 3. Suppose that α0(t) ≤ φ(t). If either

(i) there exists a positive integer m such that αn(t) is defined for

n = 1, 2, . . . ,m− 1, but αm(t) does not exist; or

(ii) αn(t) is defined for n = 1, 2, . . . , but for arbitrarily large T ∗ ≥ t0,

there is t∗ ≥ T ∗ such that

lim
n→∞αn(t∗) = ∞,

then equation (E) is oscillatory.

Theorem 4. Suppose that α0(t) ≥ |φ(t)|. If there exists t1 ≥ t0 such

that

lim
n→∞αn(t) = α(t) <∞ for t ≥ t1, (5)

then equation (E) is nonoscillatory.
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Proof. If (5) holds, then it follows from (2) and (5) that

αn(t) ≤ α(t), n = 0, 1, 2, . . . , for t ≥ t1.

Applying the monotone convergence theorem,

α(t) =
∫ ∞

t

α+(s)2

a(s)p(s)
ds + α0(t) (≥ 0), for t ≥ t1.

Thus,

α+(t) = α(t) =
∫ ∞

t

α+(s)2

a(s)p(s)
ds+ α0(t)

≥
∫ ∞

t

α+(s)2

a(s)p(s)
ds+ |φ(t)|

≥
∣∣∣∣
∫ ∞

t

α+(s)2

a(s)p(s)
ds+ φ(t)

∣∣∣∣ for t ≥ t1.

It follows from Lemma 1 that (E) is nonoscillatory. Thus, our proof is
complete. �

Corollary 5. Suppose that α0(t) ≥ |φ(t)|. If (E) is oscillatory, then

either

(i) there exists a positive integer m such that αn(t) is defined for

n = 1, 2, . . . ,m− 1, but αm(t) does not exist; or

(ii) αn(t) is defined for n = 1, 2, . . . , but, for arbitrarily large T ∗ ≥ t0,

there is t∗ ≥ T ∗ such that

lim
n→∞αn(t∗) = ∞.

If φ(t) ≥ 0, then it follows from Theorems 2 and 4 that we have the
following two corollaries.

Corollary 6. Suppose that α0(t) = φ(t) ≥ 0. Then (E) is nonoscilla-

tory if and only if there exists t1 ≥ t0 such that

lim
n→∞αn(t) = α(t) <∞ for t ≥ t1.
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Corollary 7. Suppose that α0(t) = φ(t) ≥ 0. Then (E1) is oscillatory

if and only if either

(i) there exists a positive integer m such that αn(t) is defined for

n = 1, 2, . . . ,m− 1, but αm(t) does not exist; or

(ii) αn(t) is defined for n = 1, 2, . . . , but, for arbitrarily large T ∗ ≥ t0,

there is t∗ ≥ T ∗ such that

lim
n→∞αn(t∗) = ∞.

Remark 1. For a(t) = 1, Corollaries 6 and 7 reduce to Theorems 2.1
and 2.2 in Yan [16], respectively.

Theorem 8. If there exists a function B(t) ∈ C([t1,∞); R) for some

t1 ≥ t0 such that

|φ(t)| +
∫ ∞

t

B+(s)2

a(s)p(s)
ds ≤ B+(t) for t ≥ t1, (6)

then equation (E) is nonoscillatory.

Proof. Let α0(t) = |φ(t)|. Then, by (6), 0 ≤ α0(t) ≤ B+(t) for
t ≥ t1. Thus

α1(t) =
∫ ∞

t

α+
0 (s)2

a(s)p(s)
ds+ α0(t)

≤
∫ ∞

t

B+(s)2

a(s)p(s)
ds+ |φ(t)|

≤ B+(t) for t ≥ t1.

By induction,

αn(t) ≤ B+(t), n = 0, 1, 2, . . . , t ∈ [t1,∞).

This and (2) imply that (5) holds. Thus, it follows from Theorem 4 that
(E) is nonoscillatory. �

Taking B(t) = 2|φ(t)| in the above theorem, we obtain the following
corollary which improves a result of Wintner [14].
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Corollary 9. If ∫ ∞

t

φ(s)2

a(s)p(s)
ds ≤ |φ(t)|

4

then equation (E) is nonoscillatory.

Theorem 10. Suppose that there exists a functionB(t)∈C([t0,∞); R)
with the property that for arbitrarily large T ∗ ≥ t0, there is t∗ ≥ T ∗ such

that B(t∗) > 0. If

B(t) ≤ φ(t) and kB(t) ≤
∫ ∞

t

B+(s)2

a(s)p(s)
ds for all sufficient large t, (7)

where k > 1
4 is a constant, then equation (E) is oscillatory.

Proof. Let α0(t) = φ(t). This and (7) imply that α+
0 (t) = φ+(t) ≥

B+(t) on [t1,∞) for some t1 ≥ t0. Thus

α1(t) =
∫ ∞

t

α+
0 (s)2

a(s)p(s)
ds + α0(t) ≥

∫ ∞

t

B+(s)2

a(s)p(s)
ds+B(t)

≥ (k + 1)B(t) := C1B(t), where C1 = k + 1.

By induction,

αn(t) ≥ CnB(t) for t ∈ [t1,∞),

where Cn = 1 + kC2
n−1, n = 1, 2, . . . .

(8)

Clearly, Cn>Cn−1, n= 1, 2, 3, . . . . Now we show that limn→∞Cn=∞.
Suppose the increasing sequence {Cn} is bounded above. Hence, lim

n→∞Cn

exists, say, limn→∞Cn = β ∈ R. From Cn = 1 + kC2
n−1,

β = 1 + kβ2. (9)

Since k > 1
4 , the equation (9) has no real root. This contradiction proves

that limn→∞Cn = ∞. This and (8) imply that

lim
n→∞αn(t∗) = ∞,

where t∗ ≥ t1 satisfies B(t∗) > 0. Thus, it follows from Corollary 3 that
(E) is oscillatory. �
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Taking B(t) = φ(t) in the above theorem, we obtain the following
corollary which improves an Opial’s result [11].

Corollary 11. Suppose that for arbitrarily large T ∗ ≥ t0, there is

t∗ ≥ T ∗ such that φ(t∗) > 0. If there exists ε > 0 such that∫ ∞

t

φ+(s)2

a(s)p(s)
ds ≥ (1 + ε)

4
φ(t) for all sufficient large t,

then equation (E) is oscillatory.

Remark 2. Yan [16] proved Corollaies 9 and 11 under the stronger
condition: P (t) :=

∫ ∞
t p(s) ds ≥ 0.

Corollary 12. Suppose that α0(t)≤ φ(t). Let π(t)∈C1
(
[t0,∞),(0,∞)

)
satisfy π′(t) = 1

a(t)p(t) . If one of the following conditions is satisfied:

(i) α0(t) ≥ C0
π(t) forsufficiently large t,

(ii)
∫ ∞
t

α+
0 (s)2

a(s)p(s) ds ≥ C0α0(t) for t ≥ t0,

(iii) limt→∞ α0(t) ≥ 0, and α′
0(t) ≤ − C0

a(t)p(t)π(t)2 for sufficiently large t,

where C0 >
1
4 is a constant, then (E) is oscillatory.

Proof. If (i) is satisfied, then

α1(t) =
∫ ∞

t

α+
0 (s)2

a(s)p(s)
ds + α0(t) ≥

∫ ∞

t

C2
0

a(s)p(s)π(t)2
ds+ α0(t)

=
C2

0

π(t)
+ α0(t) ≥ C2

0

π(t)
+

C0

π(t)
=

C1

π(t)
,

where C1 = C2
0 + C0. Thus, by induction,

αn(t) ≥ Cn

π(t)
, (10)

where n = 1, 2, . . . , and Cn = C2
n−1 + C0. It is easy to see that Cn >

Cn−1, n = 1, 2, . . . . Now we show that limn→∞Cn = ∞. Suppose the
increasing sequence {Cn} is bounded above. Hence, limn→∞Cn exists,
say, limn→∞Cn = β ∈ R. From Cn = C2

n−1 + C0,

β = β2 + C0. (11)
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Since C0 >
1
4 , the equation (11) has no real root. This contradiction proves

that limn→∞Cn = ∞. Thus, it follows from (10) that

lim
n→∞αn(t) = ∞, t ∈ [t0,∞).

Thus, by (ii) of Corollary 3, (E) is oscillatory.

If (ii) is satisfied, then (E) is oscillatory by taking B(t) = α0(t) in
Theorem 10.

Finally, if (iii) is satisfied, then

−α0(t) ≤
∫ ∞

t
α′

0(s) ds

≤ −C0

∫ ∞

t

1
a(s)p(s)π(s)2

ds = − C0

π(t)
.

Hence, (i) is satisfied, and hence (E) is oscillatory. �

Next we consider equation (E1). Suppose that β0(t) ∈ C([t0,∞); R)
is a given function. Similarly, we define the function sequence

{βn(t)}∞n=0, for t ≥ t0,

as follows (if it exists):

βn(t) =
∫ ∞

t

β+
n−1(s)

2

a(s)p(s)
ds+ β0(t), n = 1, 2, . . . . (12)

Clearly, β1(t) ≥ β0(t) and this implies that β+
1 (t) ≥ β+

0 (t). By induction,

βn+1(t) ≥ βn(t), n = 1, 2, . . . . (13)

That is, the function sequence {βn(t)} defined in (12) is nondecreasing on
[t0,∞).

Using Theorems 2 and 4, we can give another proof of the following
Hille–Wintner comparison theorem which is due to Li and Yeh [9].

Theorem 13. Assume that

0 < a(t)p(t) ≤ a1(t)p1(t), |φ1(t)| ≤ φ(t) for all sufficiently large t. (14)

If (E) is nonoscillatory, then (E1) is nonoscillatory; or equivalently, if (E1)
is oscillatory, then also (E) is oscillatory.
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Proof. Let α0(t)= φ(t), β0(t)= |φ1(t)|. Suppose that (E) is nonoscil-
latory. It follows from Theorem 2 that there exists t1 ≥ t0 such that

lim
n→∞αn(t) := α(t) <∞ for t ≥ t1. (15)

Clearly, by (14),
β0(t) = |φ1(t)| ≤ φ(t) = α0(t),

and hence β+
0 (t) ≤ α+

0 (t) for t ≥ t1. This and (14) imply that, for t ≥ t1,

β1(t) =
∫ ∞

t

β+
0 (s)2

a1(s)p1(s)
ds+ β0(t)

≤
∫ ∞

t

α+
0 (s)2

a(s)p(s)
ds+ α0(t) = α1(t).

By induction,

βn(t) ≤ αn(t), n = 0, 1, 2, . . . , t ∈ [t1,∞). (16)

Therefore, by (13), (15) and (16),

β(t) := lim
n→∞βn(t) ≤ lim

n→∞αn(t) = α(t) <∞, t ∈ [t1,∞).

Thus, by Theorem 4, (E1) is nonoscillatory. Hence, the proof is complete.
�

Theorem 14. Suppose that α0(t) ≤ φ(t). If equation (E) is nonoscil-

latory, then

lim sup
t→∞

[α(t) − φ(t)] exp
(

4
∫ t φ+(s)

a(s)p(s)
ds

)
<∞, (17)

where α(t) satisfies (3).

Proof. Assume that (E) is nonoscillatory, then (Ea) is nonoscillatory.
Let w(t) be a solution of (Ea) and

v(t) =
a(t)p(t)w′(t)

w(t)
.

It follows from Lemma 1 that

v(t) = u(t) + φ(t), for t ≥ t1 ≥ t0,
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where u(t) =
∫ ∞
t

v(s)2

a(s)p(s) ds. Then

u′(t) = − v(t)2

a(t)p(t)
= −(u(t) + φ(t))2

a(t)p(t)
≤ 0.

We claim that

u′(t) + 4
φ+(t)
a(t)p(t)

u(t) ≤ 0. (18)

Since u(t) > 0 and u′(t) ≤ 0, then (18) holds if φ(t) ≤ 0. If φ(t) ≥ 0, then
(u(t) + φ(t))2 ≥ 4φ+(t)u(t). This implies that (18) holds. Clearly, (18)
implies that

u(t) ≤ u(t1) exp
(
−4

∫ t

t1

φ+(s)
a(s)p(s)

ds

)
for t ≥ t1. (19)

On the other hand, we have v(t) = u(t) + φ(t) ≥ φ(t) ≥ α0(t), thus

u(t) =
∫ ∞

t

v(s)2

a(s)p(s)
ds ≥

∫ ∞

t

α+
0 (s)2

a(s)p(s)
ds.

This implies that

v(t) = u(t) + φ(t) ≥
∫ ∞

t

α+
0 (s)2

a(s)p(s)
ds+ α0(t) = α1(t) for t ≥ t1.

By induction,

v(t) = u(t) + φ(t) ≥ αn(t), n = 0, 1, 2, . . . , t ∈ [t1,∞). (20)

Therefore, (19) and (20) imply that

αn(t) − φ(t) ≤ u(t) ≤ u(t1) exp
(
−4

∫ t

t1

φ+(s)
a(s)p(s)

ds

)
,

and hence

[αn(t)−φ(t)] exp
(

4
∫ t

t1

φ+(s)
a(s)p(s)

ds

)
≤ u(t1), n = 0, 1, 2, . . . , t ∈ [t1,∞).

This and (3) imply that

exp
(

4
∫ t

t1

φ+(s)
a(s)p(s)

ds

)

= lim
n→∞[αn(t) − φ(t)] exp

(
4
∫ t

t1

φ+(s)
a(s)p(s)

ds

)
≤ u(t1), t ∈ [t1,∞).
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This implies that (17) holds. Thus we complete this proof. �
Corollary 15. Suppose that α0(t) ≤ φ(t). If either

(i) αn(t) exists for n = 1, 2, . . . ,m, and

lim sup
t→∞

[αm(t) − φ(t)] exp
(

4
∫ t φ+(s)

a(s)p(s)
ds

)
= ∞; or

(ii) (3) holds and

lim sup
t→∞

[α(t) − φ(t)] exp
(

4
∫ t φ+(s)

a(s)p(s)
ds

)
= ∞,

then equation (E) is oscillatory.

Theorem 16. Suppose that α0(t) ≤ φ(t). If∫ ∞
exp

(
−4

∫ s φ+(u)
a(u)p(u)

du

)
ds <∞,

∫ ∞
φ(s) ds <∞, (21)

and there exists a nonnegative integer m such that∫ ∞
αm(s) ds = ∞, (22)

then (E) is oscillatory.

Proof. Assume that (E) is nonoscillatory, then (1) is nonoscillatory.
Let w(t) be a solution of (1) and

v(t) =
a(t)p(t)w′(t)

w(t)
.

As the proof of Theorem 14, we obtain that

αn(t) − φ(t) ≤ u(t1) exp
(
−4

∫ t

t1

φ+(s)
a(s)p(s)

ds

)
,

n = 0, 1, 2, . . . , t ∈ [t1,∞).

(23)

Integrating (23) from t1 to t and let t→ ∞, we have∫ ∞

t1

αn(s) ds ≤ u(t1)
∫ ∞

t1

exp
(
−4

∫ s

t1

φ+(u)
a(u)p(u)

du

)
ds +

∫ ∞

t1

φ(s) ds.

Noting (21) and (22), we get a condradiction.
Hence (E) is oscillatory. �
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Remark 3. For the oscillatory criteria of (E) adopting coefficients p
and q only, we refer to Lee, Yeh and Gau [10].

3. Examples

Example 1. Consider the following differential equation

x′′(t) +
(

1
t3

+
1

4t2

)
x(t) = 0. (E3)

We take that p(t) = 1, q(t) = 1
t3

+ 1
4t2

and a(t) = t. Thus, f(t) = − a′(t)
2a(t) =

− 1
2t and ψ(t) = a(t)[q(t) + p(t)f2(t) − (p(t)f(t))′] = 1

t2
and

φ(t) =
∫ ∞

t
ψ(s)ds =

∫ ∞

t

1
s2
ds =

1
t
<∞.

Next, we let α0(t) = φ(t) = 1
t and define

αn(t) =
∫ ∞

t

α+
n−1(s)

2

a(s)p(s)
ds+ α0(t), n = 1, 2, . . . ,

where α+(t) = 1
2 [α(t) + |α(t)|]. Therefore,

α1(t) =
∫ ∞

t

1
s2

s
ds+

1
t

=
1

2t2
+

1
t
,

α2(t) =
∫ ∞

t

(
1

2s2 + 1
s

)2

s
ds+

1
t

=
1

16t4
+

1
3t3

+
1

2t2
+

1
t

and

α3(t) =
1

2048t8
+

1
168t7

+
25

864t6
+

11
120t5

+
11

48t4
+

1
3t3

+
1

2t2
+

1
t
.

It is clearly that, for t sufficiently large,

1 > αn+1(t) ≥ αn(t), n = 1, 2, . . .

and there exist t1 ≥ t0 and function α(t) such that

lim
n→∞αn(t) = α(t), for t ≥ t1.

Hence, it follows from Theorem 4 that (E3) is nonoscillatory.
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Example 2. Consider the equation (E3) and let B(t) = 2
t . We also

have p(t) = 1, a(t) = t and φ(t) = 1
t . Then,

|φ(t)| +
∫ ∞

t

B+(s)2

a(s)p(s)
ds =

1
t

+
∫ ∞

t

4
s3
ds =

1
t

+
2
t2

≤ 2
t

for t sufficiently large. Hence, it follows from Theorem 8 that (E3) is
nonoscillatory.

Example 3. Consider (E3) and the following differential equation

(
tx′(t)

)′ + 1
t2
x(t) = 0. (E4)

We take that p(t), q(t), a(t), φ(t) and φ(t) are the same as in Example 1
and p1(t) = t, q1(t) = 1

t2 , a1(t) = 1. Thus, f1(t) = − a′
1(t)

2a1(t) = 0, ψ1(t) =
a1(t)[q1(t) + p1(t)f2

1 (t) − (p1(t)f1(t))′] = 1
t2 and

φ1(t) =
∫ ∞

t
ψ1(s)ds =

1
t
<∞.

Thus,
0 < a(t)p(t) ≤ a1(t)p1(t), |φ(t)| ≤ φ1(t)

for t sufficiently large. Since (E3) is nonoscillatory, it follows from Theo-
rem 14 that (E4) is nonoscillatory.

Example 4. Consider the following differential equation

x′′(t) +
(α sin βt

tγ
+
µ

t2

)
x(t) = 0, (E5)

where α, β �= 0, γ > 0 and µ ∈ R are constants. Let

a(t) = t−2λ exp
(
− 2α

β

∫ ∞

t

cos βs
sγ

ds
)
,

where λ > max
{ − 1

2 ,
1−2γ

2

}
. Then

a(t) = t−2λ +O(t−2λ−γ), f(t) =
λ

t
− α cos βt

βtγ
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and

ψ(t) = [t−2λ +O(t−2λ−γ)]

×
[
λ2 + λ+ µ

t2
+

α2

2β2t2γ
+
α2 cos 2βt

2β2t2γ
− α(2λ+ γ) cos βt

βtγ+1

]
.

We separtate into five cases.

Case (a). If 0 < γ < 1, then

φ(t) =
α2

2β2(2λ+ 2γ − 1)
t−2λ−2γ+1 +O(t−2λ+m),

where m = max{−1, 1 − 3γ}. Let λ > 3−4γ
2 , then

∫ ∞

t

φ2
+(s)

a(s)p(s)
ds =

1
4γ + 2λ− 3

(
α2

2β2(2λ+ 2γ − 1)

)
t−4γ−2λ+3

+O(t−4γ−2λ+3) ≥ φ(t)

for all sufficiently large t. By Corollary 11, equation (5) is oscillatory.

Case (b). If γ = 1 and µ > 1
4 − α2

2β2 , then

φ(t) =
2β2(λ2 + λ+ µ) + α2

2β2(1 + 2λ)
t−2λ−1 +O(t−2λ−2),

and hence∫ ∞

t

φ2
+(s)

a(s)p(s)
ds =

1
1 + 2λ

[
2β2(λ2 + λ+ µ) + α2

2β2(1 + 2λ)

]2

t−2λ−1 +O(t−2λ−2)

=
[
1
4

+
1

(1 + 2λ)2

(
µ− 1

4
+

α2

2β2

)]
φ(t) +O(t−2λ−2).

By Corollary 11, equation (5) is oscillatory.

Case (c). If γ = 1 and µ ≤ 1
4 − α2

2β2 , we let

λ > −1
2

+

√
1
4
−

(
µ+

α2

2β2

)
,
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then there exists a constant θ > 0 such that

φ(t) ≤ 2β2(λ2 + λ+ µ) + α2

2β2(1 + 2λ)
t−2λ−1 + θt−2λ−2.

Let
B(t) = Kt−2λ−1 +Mt−2λ−2,

where

K =
1 + 2λ

2
−

√
1
4
−

(
µ+

α2

2β2

)
> 0 and M >

(1 + λ)θ
1 + λ−K

> 0,

then

|φ(t)| +
∫ ∞

t

B2
+(s)

a(s)p(s)
ds ≤ Kt−2λ−1 +

(1 + λ)θ +KM

1 + λ
t−2λ−2 +O(t−2λ−3)

≤ Kt−2λ−1 +Mt−2λ−2 = B+(t).

By Theorem 8, equation (5) is oscillatory.

Case (d). If γ > 1 and µ > 1
4 , then

φ(t) =
λ2 + λ+ µ

1 + 2λ
t−2λ−1 +O(t−2λ−h),

where
h = min{γ + 1, 2γ − 1}.

Thus,

∫ ∞

t

φ2
+(s)

a(s)p(s)
ds =

1
1 + 2λ

(
λ2 + λ+ µ

1 + 2λ

)2

t−2λ−1 +O(t−2λ−h)

=
[
1
4

+
1

(1 + 2λ)2

(
µ− 1

4

)]
φ(t) +O(t−2λ−h).

By Corollary 11, equation (5) is oscillary.

Case (e). If γ > 1 and µ ≤ 1
4 , we let

λ > −1
2

+

√
1 − µ

4
and q = min{γ + 2, 2γ} > 2,
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then

φ(t) =
λ2 + λ+ µ

1 + 2λ
t−2λ−1 +O(t−2λ−q+1) ≤ λ2 + λ+ µ

1 + 2λ
t−2λ−1 + θt−2λ−q+1

for some constant θ > 0. Let

B(t) = K∗t−2λ−1 +M∗t−2λ−q+1,

where

K∗ =
1 + 2λ−√

1 − 4µ
2

> 0 and M∗ >
(2λ+ q − 1)θ

2λ+ q − 1 − 2K∗ > 0,

then

|φ(t)| +
∫ ∞

t

B2
+(s)

a(s)p(s)
ds ≤ K∗t−2λ−1 +

(
θ +

2K∗M∗

2λ+ q − 1

)
t−2λ−q+1

+O(t−2λ−2q+3) ≤ K∗t−2λ−1 +M∗t−2λ−q+1 = B+(t).

By Theorem 8, equation (5) is oscillatory.
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