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Gregus type common fixed point theorems in metric spaces
of hyperbolic type

By LJ. B. CIRIC (Beograd) and J. S. UME (Changwon)

Abstract. In this paper we investigate a class of pairs of Gregu§ type
mapppings I and T on a metric space (X,d) which satisfy the following con-
dition: d(Tz,Ty) < ad(Ix,Iy) + Bmax{d(lz,Tx),d(Iy, Ty)} + vy max{d(Iz, Iy),
d(Iz,Tz),d(ly,Ty),b(d(Iz,Ty)+d(Iy,Tx))} for all z, y in X, where «, 3, 7y are
constants such that « >0, 6> 0,7y >0and a+ +v =1, and 3b < 1+ 2a0.
The main result is that if X is a complete metric space of hyperbolic type, I is
continuous, Co (T'(X)) C I(X) and I and T are compatible mappings of type (T'),
then I and T have a unique common fixed point and at this point 7" is continuous.

1. Introduction

Let X be a BANACH space and C a non-empty closed and convex
subset of X. In [15] GREGUS proved the following result.

Theorem 1 (GREGUS [15]). Let T': C — C' be a mapping satisfying
the following condition:

d(Tz,Ty) < ad(x,y) + pd(x, Tx) + pd(y, Ty)

for all x, y € C, where 0 < a <1,p>0and a+2p =1. Then T has a
unique fixed point.
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This result has been found very useful and has many interesting gen-
eralizations and applications (c.f. [1]-[16], [18]-[21]). Generalizing Gregus
result and the result of FISHER and SESSA [14], DAvis [9] proved the fol-
lowing common fixed point theorem.

Theorem 2 (Davis [9]). Let I and T be two mappings of C' into
itself, satisfying the inequality

d(Tz,Ty) < ad(Iz,Iy) + fmax{([z,Tx),d(ly, Ty)}
+ymax{d(Iz, Iy),d(Iz, Tz),d(ly, Ty)}

for all x, y € C, where «, 3, v are constants such that « >0, >0,y >0
and a+f+~ = 1. If [ is linear, non-expansive and weakly commuting with
T in C, and if I(C') contains T(C'), then T and I have a unique common
fixed point in C and at this point T is continuous.

Further, DAvIS and SESSA in [10] relaxed hypotheses for I, and weakly
commutativity replaced by compatibility.

The purpose of this paper is to introduce and to study a class of pairs
of Gregus-type mappings I and T from an arbitrary non-empty set Y into
a metric space (X, d) of hyperbolic type satisfying the following condition:

d(Tz, Ty) < ad(Ix,ly) + fmax{d([z,Tz),d(1y, Ty)}
14 2ap

+ v max {d([x, Iy),d(Iz,Tx),d(Iy, Ty), (d(Ix,Ty) + d(Iy, Tx))}
for all z, y in Y, where « > 0, 8 >0,y >0and a+8+v7=1. We
introduce an improved technique and prove that if Y is a subset of X
such that T'(Y") is bounded, Co(T'(Y')) C I(Y'), I is continuous on Y and [
and T are compatible mappings of type (7), then T" and I have a unique
common fixed point in Y and at this point T is continuous.

2. Main results

Throughout our consideration we suppose that (X, d) is a metric space
which contains a family L of metric segments (isometric images of real line
segments) such that
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(a) each two points x, y in X are endpoints of exactly one member seg[z, y]
of L,

(b) if w, , y € X and if z € seglx,y] satisfies d(z,z) = Ad(zx,y) for
A € [0,1], then

d(u,z) < (1= Nd(u,x) + Ad(u, y). (1)

Space of this type is said to be a metric space of hyperbolic type (Takahashi
[15] uses the term “convex metric space”). Further, a non-empty subset C
of X is of hyperbolic type if a subspace (C,d) is of hyperbolic type. For
A C X, Co(A) will denote the intersection of all subsets of X which are
of hyperbolic type and contain A. A class of metric spaces of hyperbolic
type includes all normed linear spaces, as well as all spaces with hyperbolic
metric (see [16], for a discussion).

Now we prove the following lemma in metric spaces of hyperbolic type.

Lemma 1. Let Y be an arbitrary non-empty set and (X, d) a metric
space of hyperbolic type. Let I and T be maps from Y into X satisfying
the following condition:

d(Tz, Ty) < ad(Ix,ly) + fmax{d([z,Tz),d(ly, Ty)}

+ ymax{d(Iz, Iy),d(Ix,Tz),d(Iy, Ty),b(d(Iz, Ty) + d(1y,Tz))} @)

for all x, y € Y, where «, 3, 7y, b are constanst such that o > 0, § > 0,
v>0,3b <1+ 2af and

a+pB+vy=1 (3)
If Co(T'(Y)) C I(Y'), then

inf{d(Iz,Tx) :z €Y} =0. (4)

PROOF. To show that I and T satisfy (4), it is sufficies to show that
for any point xg in Y there exists a point z = z(zp) in Y such that

d(1z,Tz) < Md(Izg,Txg),

where A < 1 and A does not depend of xg.

Pick zg € Y. Then Ixg and Txg are defined. Choose an element 21 €Y
such that [zy = Txzg. Such a choice is permissible since T'(Y") C I(Y).
Similarly, choose z2 € Y such that Ize = T'z;. Then choose x3 € Y such
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that Ix3 = Tzo, and so on. Thus, inductively we choose the sequence {x,, }
in Y defined by

Iz, =Tx, (forn=0,1,2,...).
For notation simplicity, for each n > 0 set
rn =d(Iz,, Try), s, =dIx,, Trpi1).

If r,, = 0 for some n, then Tz, = Iz, and we have finished the proof
of Lemma. So we assume that r, > 0 for all n > 0. From (2), with z = x,,
and y = x,41, we have for each n > 0, as Iz,11 =Tz, as Iz, = Txy,

Tnt1 = d(Txy, Txpy1) < ad(Izy, Ty)
+ fmax{d(Iz,, Txy,),d(Ixp+1, TTni1)}
+ ymax{d(Iz,,Tx,),dIxni1, TTpi1),bd(Izy,, Txni1)}

Thus we have
T+l < arp + fmax{r,, rp+1} + v max{r,, r4+1,bsn}. (5)

Since (3) implies that

a2 1
(17)<17§

1
afB < -
- 4 - 4 4’

we have b < % By the triangle inequality we get s, < (ry, 4+ rpy1) <
2 - max{ry, rnps1}. Thus, from (5), it follows

Tna1 < arp + (B + ) max{r,, r,11}. (6)

If we assume that r, < rp41 for some n, then from (6) and (3) we have,
as a > 0,
T+l < arpg1 + (B + )41 = T,

a contradiction. Therefore, r, 11 < 7, for all n > 0. This implies
rn <rg=dlxg,Txg) (forn=12,...). (7)
From (2), with z = z,, and y = z,,42, we get, by (7),

Spt1 = d(Tzy, Txpyo) < as, + fBro
+ v max{sy, ro, b(d(Izy, Txpia) +10)}-
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Write t, = d(Izy, TTpi2) for n =0,1,2,... Then from (2) and (7) we

obtain
tpy1 = d(T."L‘n, Txn+3) < at, + Bro

+ ymax{ty, ro, b(d(Ixy, TTpi+3) + Sn+1) }- )
Since by the triangle inequality and (7) we have
d(Izy, Txnys) < dIxy, Tanio) + roys < tn + 10
and as sp4+1 < 219, from (9) we get

tny1 < atp + Bro +ymax{t,, ro, b(t, + 3ro)}. (10)

By the triangle inequality and (7), we have that ¢, < 3ry for each n > 0.
Thus, limsupt, =t < 3rg. Taking the limit superior in (10) we get

t < at + Pro + vy max{t, ro, b(t + 3ro)}. (11)

Assume that ¢ > rg. Then, if from (11) ¢ < at + Brg + ~t, then we get
t < To-
If from (11), t < at + Bro +vb(t + 3rp), then, as vbt < It and by (3),

3vbro < (v + 2(ay)B)ro < <’Y + é) 70,

2
we get that
gl g
tﬁat+ﬂ7’g+§t+ ’y+§ 0.
Hence we get
3 2
p< 30T 7r0:<2— b >7’0<<2—é)7’0. (12)
28+~ 28+~ 3

Thus, there exists ng such that d(Iz,, Tz, y2) = t, < 2rg — (6/4)r¢ for all
n > np. Substituting this in (8) we get that

b
Snt1 < asy, + Pro + ymax {sn,ro, 3brg — Zﬂm} (13)

for all n > ng. Since s, < 1y + 111 < 2rg for all n > 0, we have that
limsup s, = s < 2ry. Taking the upper limit in (13) we get

b
s < as+ By +’ymax{s,7“0,(1+2aﬁ)ro— Zﬂro}. (14)
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Assume that s > r9. Then, if from (14), s < as + Brg + s, then we get
s < rp.
If from (14), s < as+ Bro + (v + 2a87)ro — ﬂ7’0, then it follows

208y bBy
§<1+ﬁ+7_45+w>m'

Thus, there exists k > ng such that

aﬁv)
s, < |1+ Q. 15
( B+ =
Let z € Y be such that Iz € seg[Txy, Tx11] and such that
1 1 1
d(1z,Tzy) = §d(T-’Bk:,TfL‘k+1) = 57"k+1 < 570 (16)
Since X is of hyperbolic type, from (1), with A = = and u = Txpyq, we
get
1 1
d(IZ,Txk+1) 5d(T$k,TIL’k+1) < 57’0. (17)

Again from (1), but now with u = T'zj_1, we obtain

1
d(Iz, Twp-1) < 5(d(T2p—1, Teg) + d(T2h-1, Th11))

(18)
= S0k + ) < ro + 50)
= 9 Tk Sk) > B To Sk ).
From (18) and (15) we have
a
d(Iz,Txg_1) < <1 + 5 —ﬂﬂy) 0. (19)
Again from (1), but now with u = T'z, we get
1
d(1z,Tz) < =(d(Tz,Tx) + d(Tz,Txriq)). (20)

2

Put
M = max{d(Iz,Tz),d(Ixo,Txo)}.

Then from (2), (16) and (17) we have, as Ixp41 = Ty,

M
d(Tz,T:r:kH)g%M—l—ﬁM + v max {]\24 M.,b < —l—d(Tl‘k,TZ))} . (21)
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Since b < %, by the triangle inequality and (16) we get
M M
b <7 + d(Txk,Tz)> <b <7 +d(Txy, I2) + d(Iz,Tz)>
1/ M M
<-|\—+—+M)=M.
<3 < 5 +t5 t >

Thus from (21) and (3) we obtain

ATz, Trypr) < (1 - %) M.

Again from (2) and (16) we have
d(Tz,Txy) < ad(lz,Txp_1)+ BM

M
+ 7y max {d(Iz,Ta:k_l), M,b <7 + d(Ia:k,Tz)> } :

Since by the triangle inequality
d(Izg,Tz) =d(Txk_1,Tz) < d(Txg_1,12) +d(1z,T2)
<d(Iz,Txp—1)+ M,
from (23) we get
d(Tz,Txy) < ad(lz,Txi_1) + M

142
—l—’ymax{d([z,T:ck_l),M, +3 ab <;M—i— d(Iz,Txk_1)> }

Consider now two possible cases.

Case I. Assume that from (24) we have
d(Tz,Txy) < oad(lz, Tap—1) + M +~yd(Iz, Txp_1).
Then by (19) we get

abyla+7),,
B+
(ay)ab + (By)ay,
B+

d(Tz,Txp) < (a+ L +v)M +

— M+

95

(23)

(24)

(25)
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Since (3) implies that 4ay < (1 —8)? < 1, 48y < (1 — a)? < 1, from (25)
we get

aff + ay e
d(Tz,Txy) <M+ ———M = (14 —) M.
(T2 Ta) < Mo+ G id = (14 )
Hence we have o N
d(Tz, Txy,) < (1 + 5) M- M. (26)

Thus, from (20) and by (26) and (22), we get
d(1z,Tz) < (1 - %) max{d([z,Tz),d(Ixo,Txg)}.
Hence we have, as a > 0,

d(12,Tz) < (1 - %) d(Iz, Txo). (27)

Case II. Assume now that (24) implies

¥+ 20y

d(Tz,Txy) < ad(lz,Txp_1) + BM + 3

<§M—i— d(Iz,Ta:k_l)> .
Then by (19) we get

afy y+2a8y (5 afy

5 ) Mt 5a67v(8 +7) + afy(3a + v + 2a37)

:<Oé+ﬂ+_7 3(8+7)

M.
6

Thus we have

) L
d(Tz,Txy) < <a + 6+ 67) M + 5 M, (28)

(B+7)

where

L =10(87)aB + (2(87)ay + 4(ay) By + 4(aB)y?) + 6(aB)ay + 2(8y)ay
+ 2(ay)(By)af + 2(aB)(By)ory.

Since af3, oy, By < %, we get

1 1
ngaﬂ—kga’y—l—ﬂ’y-i-’yg—i-gaﬂ—kgav
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= 3a(+7) + (8 +7) ~ 2a(3+ 7).

Now from (28) we get

) a v 1
< = — 4L = ,
d(Tz,Txk)_<a+ﬂ+6’y>M—i—<2+6 16a>M

Hence, by (3), we have
o 1
< — )M — —aM.
d(Tz, Tay) < (1 + 2) M — —aM (29)
Thus, from (20) and by (29) and (22), we get

d(1z,Tz) < (1 - ;—2> max {d(Iz,Tz),d(Ixg, Txo)},

and hence

d(I2,T%) < (1 - ;‘—2) d(Izo, Txo). (30)

Taking in consideration (27) and (30), we conclude that in both cases
d(12,Tz) < (1 - ;—2> d(lzg, Txo)

holds. O

Generalizing the Jungck’s notion of compatibility of two mappings,
PATHAK et al. in [20] introduced the concept of compatible mappings of
type (T') (type (I)) in normed spaces.

Definition 1. Let I and T be mappings from a normed space X into
itself. The mappings I and T are said to be compatible of type (T) if

limsup || [Tz, — [z,| + limsup || [Tz, — TIx,|| <limsup ||TIz, — Tz,],
n—o00 n—o00 n—00
whenever {z,,} is a sequence in X such that lim,_,o Iz, = lim,, oo Tz, =t
for some ¢t € X. (Note that originally in [20] write lim instead of lim sup,
but we think that limsup is more convenient.)

Every compatible pair of mappings is a compatible pair of type (7')
(see Proposition 2.1 in [20]), but not conversily (see Example 2.1 in [20]).

Now we prove our main result.
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Theorem 1. Let Y be an arbitrary non-empty set and (X, d) a met-
ric space of hyperbolic type. Let I and T be two mappings from Y
into X, satisfying (2), where o, (3, v, b are as in Lemma 1, and such
that Co(T(Y)) C I(Y'). Further, suppose that

(I) T(Y) or I(Y) is complete, then I and T have a coincidence point,
say u € Y, i.e. such that Tu = Iu, and if Tv = Iv for some other point
v eY, then Iv = [u;

(IT) Y is a subset of X such that T'(Y') is bounded, I is continuous on
Y and I and T' are compatible mappings of type (T), then T and I have
a unique common fixed point in Y and at this point T is continuous.

PROOF. By Lemma 1 it follows that I and T satisfy (4). Thus we can
choose a sequence {x,} in Y such that

lim d(Iz,,Tx,) =0. (31)

n—oo
We show that {Ix,} in X is a Cauchy sequence. Denote
T =d(Izy, Txy).
Using the triangle inequality, from (2) we have
d(Izp, [xy) <1ty +d(Txm, Ta,) + 15 <
+ 7+ ad(Izy,, [z,) + fmax{r,, r}
+ ymax{d(Ixy, I2y), "m, Tn, 0(d(Ixp, Txy) + d(Izy, Txp))}-
Using again the triangle inequality and take in consideration that
max{ry, ™n} < rm + m, we get
AL, T2n) < (14 8)(rm + 70) + ad(Izm, r,) )
+ ymax{d(Izy,, [x,), Tm, M, D(2d(IXm, [2y,) + 7 + 7)) }

Since b < %, from (32) we get
d(Ixm, Tz,) < (14 8)(rm + r0) + ad(Izm, [1,)
+ ymax{d(Izy, [x,), m, r, (d(Izy, [x,) + %(Tm +r))}-
Hence we have, by (3),

1+8+7~/2

dIzy, Ix,) <
( ) 3

(rm + 7). (33)
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Taking the limit in (33) when n > m — 400 we get, by (31),

lim d(lzp,lz,)=0.

n>m-—oo

Thus, {Iz,} is a Cauchy sequence in X.
We show (I). Suppose that I(Y) is complete. Then there exists a
point p € I(Y) such that
lim Iz, =p. (34)

n—oo

From (31) it also follows that lim,,_,. Tz, = p.
Let uw € Y be such that Ju = p. This can done since T(Y) C I(Y).
We prove that Tu = p. From (2) we have
d(Tu, Tzy,) < ad(lu, Iz,) + S max{d(Iu, Tu),d(Ix,, Tz,)}
+ ymax{d(Iu, Ixy,),dIu,Tu),dIz,, Txy,),b(d(Iu, Txy) + d(Ix,, Tu))}.

Passage to the limit as n tends to infinity yelds, by (34),
d(Tu,p) < (B + 7)d(Tu, p). (35)

Since S+ =1—a < 1, from (35) it follows that d(Tu,p) = 0. Hence
Twu = p. Thus we have
Tu = Iu=p. (36)

Further, if we assume that T'(Y") is complete, we get the same conclusion.
Assume that v € Y is such that v = Tw. Then we get, as 2b < 1,
d(Iv,Iu) = d(Tv,Tu) < ad(Iv, Iu) + ymax{d(Iu, Iv),2bd(Iv, [u)}
= (a +y)d(Iv, Iu).

This implies, as a +v =1 — [ < 1, that d({v, Iu) = 0. Hence Iv = Iu.
Now we prove (II). Since I is continuous, from (34) it follows

lim [Ix, =Ip and lim [Tz, = Ip. (37)

Since I and T are compatible mapping of type (T'), by Definition 1,
and by (34), (36) and (37) we have

d(Ip,p) + limsupd(TIz,,Ip) <limsupd(TIz,,Tu). (38)

n—oo n—oo
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From (2) and by (36) we get, as b < %,

d(TIzy, Tu) < ad(llzy, [u) + pd(I 1z, T1z),)
+ ymax{d(I [z, [u),d[Ix,,TIx,), %(d([[xn, Tu) + d(Iu,TIx,))}.

Using that d(fu,TIx,) < d(lu,Ip) + d(TIzy,Ip) and taking the limit
superior as n — 0o, we obtain, by (36) and (37),

limsup d(T1z,, Tu) < ad(Ip,p) + limsup d(T 1z, Ip)

n—oo

+~(d(Ip,p) + limsup d(T Iz, Ip)).

n—0oo

Hence we get
limsupd(TIx,, Tu) < (a+v)d(Ip,p)

+ (B + ) limsup d(TIxy, Ip). (39)

n—oo

From (38) and (39), and using (3),we obtain

Bd(Ip,p) + alimsup d(T1x,, Ip) < 0.

n—oo

This implies, as a >0, § > 0, that d(Ip, p)=0 and lim,, o d(T Iz, Ip) = 0.
Hence Ip = p. Again from (2) we have

d(Tp,Txy,) < ad(Ip,Iz,) + fmax{d(Ip,Tp),d(Izx,, Tx,)}
+ ymax{d(Ip, Iz,),d(Ip,Tp),d(Ixy, Txy), (d(Ip.Txy) + d(Iz,, Tp))}.

Taking the limit as n — co we get

d(Tp,p) < (B4 ) d(Tp,p).

Hence, as f++v =1 —a < 1, we have d(Tp,p) = 0; hence T'p = p. Thus
we proved that

Tp=p=Ip,

i.e. p is a common fixed point of T" and I. Let ¢ be also a common fixed
point of T" and I. Then, from d(p,q) = d(Tp,Tq) and (2), we obtain

d(p,q) < (a+7)d(p,q).
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Since [ > 0 implies that « + v =1— 8 < 1, we have d(p,q) =0 and so T
and I have a unique common fixed point.

Now we show that T is continuous at p. Let {y,} be a sequence in
Y C X with the limit p. From (2) we have, as b < %,

d(p, Tyn) = d(Tp, Tyyn) < ad(Ip, Iy,) + Bd(Iyn, Tyy)

+ v max{d(Ip, Iyy), d(Iyn, Tyn), 5 (d(Ip, Tyn) + d(Iyn, Tp))}
< ad(p, Iyn) + B(Iyn,p) + d(p, Tyn)) + ¥(dIyn,p) + d(p, Tyn))

and hence, letting n go to infinity, we obtain

limsup d(p, T'yn) < (B + ) limsup d(p, Typ).

n—oo n—oo

As B+ v < 1, the last inequality implies

lim sup d(p, T'y») = 0,

n—oo
and this means that T is continuous at u. O

Remark 1. If b = 0, then the condition (2) becomes the contractive
condition of DAVIS [9], but Theorem 1, with b = 0, is a generalization of
Theorem in [9].

Remark 2. Theorem 1 with v = 0 is a generalization of Theorem of
FISHER and SESSA [14] and JUNGCK [16].

Remark 3. The condition that Co(T'(Y)) is contained in I(Y") is nec-
essary in our Theorem 1. This shows the following example.

Example 1. Let X be the set of reals with the usaul distance and
Y =[0,1]. Define 7,1 : Y — Y as follows:
Tr=1 for0<x<1/2 and Tzx=0 forl/2<z<1;
Iz =0 for0<x<1/2 and Iz=1 forl/2<az<1.

Then all the assumptions of our Theorem are trivially satisfied except that
Co(T(Y)) CI(Y), but T and I do not have common fixed points.

Remark 4. The following example shows that our Theorem 1 as a
genuine generalizaton of the theorems [6], [12]-[14], [16] and [19].
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Ezample 2. Let Y = [0, 1] be the closed unit interval and 7,1 : Y — Y

be defined by Tz = x/4 and Iz = z'/2. Clearly Co[T(Y)] C I(Y), I is
continuous and 7" and I are weakly commutative, hence compatile of type
(T). As

d(Tz,Ty) =1/4- |z —y| < 1/4- |z

2
—y|m =1/2-d(Iz,Iy)

for all ,y € Y, we conclude that all the hypotheses of Theorem 1 are
satisfed and 0 is a unique common fixed point. But [ is neither linear nor

nonexpansive.
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