Greguš type common fixed point theorems in metric spaces of hyperbolic type

By LJ. B. ĆIRIĆ (Beograd) and J. S. UME (Changwon)

Abstract

In this paper we investigate a class of pairs of Greguš type mapppings I and T on a metric space (X, d) which satisfy the following condition: $d(T x, T y) \leq \alpha d(I x, I y)+\beta \max \{d(I x, T x), d(I y, T y)\}+\gamma \max \{d(I x, I y)$, $d(I x, T x), d(I y, T y), b(d(I x, T y)+d(I y, T x))\}$ for all x, y in X, where α, β, γ are constants such that $\alpha>0, \beta>0, \gamma \geq 0$ and $\alpha+\beta+\gamma=1$, and $3 b \leq 1+2 \alpha \beta$. The main result is that if X is a complete metric space of hyperbolic type, I is continuous, $\mathrm{Co}(T(X)) \subset I(X)$ and I and T are compatible mappings of type (T), then I and T have a unique common fixed point and at this point T is continuous.

1. Introduction

Let X be a Banach space and C a non-empty closed and convex subset of X. In [15] Greguš proved the following result.

Theorem 1 (Greguš [15]). Let $T: C \rightarrow C$ be a mapping satisfying the following condition:

$$
d(T x, T y) \leq a d(x, y)+p d(x, T x)+p d(y, T y)
$$

for all $x, y \in C$, where $0<a<1, p \geq 0$ and $a+2 p=1$. Then T has a unique fixed point.

[^0]This result has been found very useful and has many interesting generalizations and applications (c.f. [1]-[16], [18]-[21]). Generalizing Greguš result and the result of Fisher and Sessa [14], Davis [9] proved the following common fixed point theorem.

Theorem 2 (Davis [9]). Let I and T be two mappings of C into itself, satisfying the inequality

$$
\begin{gathered}
d(T x, T y) \leq \alpha d(I x, I y)+\beta \max \{(I x, T x), d(I y, T y)\} \\
+\gamma \max \{d(I x, I y), d(I x, T x), d(I y, T y)\}
\end{gathered}
$$

for all $x, y \in C$, where α, β, γ are constants such that $\alpha>0, \beta>0, \gamma \geq 0$ and $\alpha+\beta+\gamma=1$. If I is linear, non-expansive and weakly commuting with T in C, and if $I(C)$ contains $T(C)$, then T and I have a unique common fixed point in C and at this point T is continuous.

Further, Davis and Sessa in [10] relaxed hypotheses for I, and weakly commutativity replaced by compatibility.

The purpose of this paper is to introduce and to study a class of pairs of Greguš-type mappings I and T from an arbitrary non-empty set Y into a metric space (X, d) of hyperbolic type satisfying the following condition:

$$
\begin{gathered}
d(T x, T y) \leq \alpha d(I x, I y)+\beta \max \{d(I x, T x), d(I y, T y)\} \\
+\gamma \max \left\{d(I x, I y), d(I x, T x), d(I y, T y), \frac{1+2 \alpha \beta}{3}(d(I x, T y)+d(I y, T x))\right\}
\end{gathered}
$$

for all x, y in Y, where $\alpha>0, \beta>0, \gamma \geq 0$ and $\alpha+\beta+\gamma=1$. We introduce an improved technique and prove that if Y is a subset of X such that $T(Y)$ is bounded, $\operatorname{Co}(T(Y)) \subset I(Y), I$ is continuous on Y and I and T are compatible mappings of type (T), then T and I have a unique common fixed point in Y and at this point T is continuous.

2. Main results

Throughout our consideration we suppose that (X, d) is a metric space which contains a family L of metric segments (isometric images of real line segments) such that
(a) each two points x, y in X are endpoints of exactly one member $\operatorname{seg}[x, y]$ of L,
(b) if $u, x, y \in X$ and if $z \in \operatorname{seg}[x, y]$ satisfies $d(x, z)=\lambda d(x, y)$ for $\lambda \in[0,1]$, then

$$
\begin{equation*}
d(u, z) \leq(1-\lambda) d(u, x)+\lambda d(u, y) \tag{1}
\end{equation*}
$$

Space of this type is said to be a metric space of hyperbolic type (Takahashi [15] uses the term "convex metric space"). Further, a non-empty subset C of X is of hyperbolic type if a subspace (C, d) is of hyperbolic type. For $A \subset X, \operatorname{Co}(A)$ will denote the intersection of all subsets of X which are of hyperbolic type and contain A. A class of metric spaces of hyperbolic type includes all normed linear spaces, as well as all spaces with hyperbolic metric (see [16], for a discussion).

Now we prove the following lemma in metric spaces of hyperbolic type.
Lemma 1. Let Y be an arbitrary non-empty set and (X, d) a metric space of hyperbolic type. Let I and T be maps from Y into X satisfying the following condition:

$$
\begin{gather*}
d(T x, T y) \leq \alpha d(I x, I y)+\beta \max \{d(I x, T x), d(I y, T y)\} \\
+\gamma \max \{d(I x, I y), d(I x, T x), d(I y, T y), b(d(I x, T y)+d(I y, T x))\} \tag{2}
\end{gather*}
$$

for all $x, y \in Y$, where α, β, γ, b are constanst such that $\alpha>0, \beta>0$, $\gamma \geq 0,3 b \leq 1+2 \alpha \beta$ and

$$
\begin{equation*}
\alpha+\beta+\gamma=1 \tag{3}
\end{equation*}
$$

If $\mathrm{Co}(T(Y)) \subset I(Y)$, then

$$
\begin{equation*}
\inf \{d(I x, T x): x \in Y\}=0 \tag{4}
\end{equation*}
$$

Proof. To show that I and T satisfy (4), it is sufficies to show that for any point x_{0} in Y there exists a point $z=z\left(x_{0}\right)$ in Y such that

$$
d(I z, T z) \leq \lambda d\left(I x_{0}, T x_{0}\right)
$$

where $\lambda<1$ and λ does not depend of x_{0}.
Pick $x_{0} \in Y$. Then $I x_{0}$ and $T x_{0}$ are defined. Choose an element $x_{1} \in Y$ such that $I x_{1}=T x_{0}$. Such a choice is permissible since $T(Y) \subset I(Y)$. Similarly, choose $x_{2} \in Y$ such that $I x_{2}=T x_{1}$. Then choose $x_{3} \in Y$ such
that $I x_{3}=T x_{2}$, and so on. Thus, inductively we choose the sequence $\left\{x_{n}\right\}$ in Y defined by

$$
I x_{n+1}=T x_{n} \quad(\text { for } n=0,1,2, \ldots) .
$$

For notation simplicity, for each $n \geq 0$ set

$$
r_{n}=d\left(I x_{n}, T x_{n}\right), \quad s_{n}=d\left(I x_{n}, T x_{n+1}\right) .
$$

If $r_{n}=0$ for some n, then $T x_{n}=I x_{n}$ and we have finished the proof of Lemma. So we assume that $r_{n}>0$ for all $n \geq 0$. From (2), with $x=x_{n}$ and $y=x_{n+1}$, we have for each $n \geq 0$, as $I x_{n+1}=T x_{n}$, as $I x_{n+1}=T x_{n}$,

$$
\begin{aligned}
r_{n+1}= & d\left(T x_{n}, T x_{n+1}\right) \leq \alpha d\left(I x_{n}, T x_{n}\right) \\
& +\beta \max \left\{d\left(I x_{n}, T x_{n}\right), d\left(I x_{n+1}, T x_{n+1}\right)\right\} \\
& +\gamma \max \left\{d\left(I x_{n}, T x_{n}\right), d\left(I x_{n+1}, T x_{n+1}\right), b d\left(I x_{n}, T x_{n+1}\right)\right\} .
\end{aligned}
$$

Thus we have

$$
\begin{equation*}
r_{n+1} \leq \alpha r_{n}+\beta \max \left\{r_{n}, r_{n+1}\right\}+\gamma \max \left\{r_{n}, r_{n+1}, b s_{n}\right\} . \tag{5}
\end{equation*}
$$

Since (3) implies that

$$
\alpha \beta \leq \frac{(1-\gamma)^{2}}{4} \leq \frac{1-\gamma}{4} \leq \frac{1}{4},
$$

we have $b \leq \frac{1}{2}$. By the triangle inequality we get $s_{n} \leq\left(r_{n}+r_{n+1}\right) \leq$ $2 \cdot \max \left\{r_{n}, r_{n+1}\right\}$. Thus, from (5), it follows

$$
\begin{equation*}
r_{n+1} \leq \alpha r_{n}+(\beta+\gamma) \max \left\{r_{n}, r_{n+1}\right\} . \tag{6}
\end{equation*}
$$

If we assume that $r_{n}<r_{n+1}$ for some n, then from (6) and (3) we have, as $\alpha>0$,

$$
r_{n+1}<\alpha r_{n+1}+(\beta+\gamma) r_{n+1}=r_{n+1}
$$

a contradiction. Therefore, $r_{n+1} \leq r_{n}$ for all $n \geq 0$. This implies

$$
\begin{equation*}
r_{n} \leq r_{0}=d\left(I x_{0}, T x_{0}\right) \quad(\text { for } n=1,2, \ldots) . \tag{7}
\end{equation*}
$$

From (2), with $x=x_{n}$ and $y=x_{n+2}$, we get, by (7),

$$
\begin{align*}
s_{n+1}= & d\left(T x_{n}, T x_{n+2}\right) \leq \alpha s_{n}+\beta r_{0} \\
& +\gamma \max \left\{s_{n}, r_{0}, b\left(d\left(I x_{n}, T x_{n+2}\right)+r_{0}\right)\right\} . \tag{8}
\end{align*}
$$

Write $t_{n}=d\left(I x_{n}, T x_{n+2}\right)$ for $n=0,1,2, \ldots$ Then from (2) and (7) we obtain

$$
\begin{align*}
t_{n+1}= & d\left(T x_{n}, T x_{n+3}\right) \leq \alpha t_{n}+\beta r_{0} \\
& +\gamma \max \left\{t_{n}, r_{0}, b\left(d\left(I x_{n}, T x_{n+3}\right)+s_{n+1}\right)\right\} \tag{9}
\end{align*}
$$

Since by the triangle inequality and (7) we have

$$
d\left(I x_{n}, T x_{n+3}\right) \leq d\left(I x_{n}, T x_{n+2}\right)+r_{n+3} \leq t_{n}+r_{0}
$$

and as $s_{n+1} \leq 2 r_{0}$, from (9) we get

$$
\begin{equation*}
t_{n+1} \leq \alpha t_{n}+\beta r_{0}+\gamma \max \left\{t_{n}, r_{0}, b\left(t_{n}+3 r_{0}\right)\right\} \tag{10}
\end{equation*}
$$

By the triangle inequality and (7), we have that $t_{n} \leq 3 r_{0}$ for each $n \geq 0$. Thus, $\lim \sup t_{n}=t \leq 3 r_{0}$. Taking the limit superior in (10) we get

$$
\begin{equation*}
t \leq \alpha t+\beta r_{0}+\gamma \max \left\{t, r_{0}, b\left(t+3 r_{0}\right)\right\} \tag{11}
\end{equation*}
$$

Assume that $t \geq r_{0}$. Then, if from (11) $t \leq \alpha t+\beta r_{0}+\gamma t$, then we get $t \leq r_{0}$.

If from (11), $t \leq \alpha t+\beta r_{0}+\gamma b\left(t+3 r_{0}\right)$, then, as $\gamma b t \leq \frac{\gamma}{2} t$ and by (3),

$$
3 \gamma b r_{0} \leq(\gamma+2(\alpha \gamma) \beta) r_{0} \leq\left(\gamma+\frac{\beta}{2}\right) r_{0}
$$

we get that

$$
t \leq \alpha t+\beta r_{0}+\frac{\gamma}{2} t+\left(\gamma+\frac{\beta}{2}\right) r_{0}
$$

Hence we get

$$
\begin{equation*}
t \leq \frac{3 \beta+2 \gamma}{2 \beta+\gamma} r_{0}=\left(2-\frac{\beta}{2 \beta+\gamma}\right) r_{0}<\left(2-\frac{\beta}{3}\right) r_{0} \tag{12}
\end{equation*}
$$

Thus, there exists n_{0} such that $d\left(I x_{n}, T x_{n+2}\right)=t_{n}<2 r_{0}-(\beta / 4) r_{0}$ for all $n \geq n_{0}$. Substituting this in (8) we get that

$$
\begin{equation*}
s_{n+1} \leq \alpha s_{n}+\beta r_{0}+\gamma \max \left\{s_{n}, r_{0}, 3 b r_{0}-\frac{b \beta}{4} r_{0}\right\} \tag{13}
\end{equation*}
$$

for all $n \geq n_{0}$. Since $s_{n} \leq r_{n}+r_{n+1} \leq 2 r_{0}$ for all $n \geq 0$, we have that $\limsup s_{n}=s \leq 2 r_{0}$. Taking the upper limit in (13) we get

$$
\begin{equation*}
s \leq \alpha s+\beta r_{0}+\gamma \max \left\{s, r_{0},(1+2 \alpha \beta) r_{0}-\frac{b \beta}{4} r_{0}\right\} \tag{14}
\end{equation*}
$$

Assume that $s \geq r_{0}$. Then, if from (14), $s \leq \alpha s+\beta r_{0}+\gamma s$, then we get $s \leq r_{0}$.

If from (14), $s \leq \alpha s+\beta r_{0}+(\gamma+2 \alpha \beta \gamma) r_{0}-\frac{b \beta \gamma}{4} r_{0}$, then it follows

$$
s \leq\left(1+\frac{2 \alpha \beta \gamma}{\beta+\gamma}-\frac{b \beta \gamma}{4(\beta+\gamma)}\right) r_{0}
$$

Thus, there exists $k>n_{0}$ such that

$$
\begin{equation*}
s_{k} \leq\left(1+\frac{2 \alpha \beta \gamma}{\beta+\gamma}\right) r_{0} \tag{15}
\end{equation*}
$$

Let $z \in Y$ be such that $I z \in \operatorname{seg}\left[T x_{k}, T x_{k+1}\right]$ and such that

$$
\begin{equation*}
d\left(I z, T x_{k}\right)=\frac{1}{2} d\left(T x_{k}, T x_{k+1}\right)=\frac{1}{2} r_{k+1} \leq \frac{1}{2} r_{0} . \tag{16}
\end{equation*}
$$

Since X is of hyperbolic type, from (1), with $\lambda=\frac{1}{2}$ and $u=T x_{k+1}$, we get

$$
\begin{equation*}
d\left(I z, T x_{k+1}\right) \leq \frac{1}{2} d\left(T x_{k}, T x_{k+1}\right) \leq \frac{1}{2} r_{0} . \tag{17}
\end{equation*}
$$

Again from (1), but now with $u=T x_{k-1}$, we obtain

$$
\begin{align*}
d\left(I z, T x_{k-1}\right) & \leq \frac{1}{2}\left(d\left(T x_{k-1}, T x_{k}\right)+d\left(T x_{k-1}, T x_{k+1}\right)\right) \tag{18}\\
& =\frac{1}{2}\left(r_{k}+s_{k}\right) \leq \frac{1}{2}\left(r_{0}+s_{k}\right)
\end{align*}
$$

From (18) and (15) we have

$$
\begin{equation*}
d\left(I z, T x_{k-1}\right) \leq\left(1+\frac{\alpha \beta \gamma}{\beta+\gamma}\right) r_{0} \tag{19}
\end{equation*}
$$

Again from (1), but now with $u=T z$, we get

$$
\begin{equation*}
d(I z, T z) \leq \frac{1}{2}\left(d\left(T z, T x_{k}\right)+d\left(T z, T x_{k+1}\right)\right) \tag{20}
\end{equation*}
$$

Put

$$
M=\max \left\{d(I z, T z), d\left(I x_{0}, T x_{0}\right)\right\}
$$

Then from (2), (16) and (17) we have, as $I x_{k+1}=T x_{k}$,

$$
\begin{equation*}
d\left(T z, T x_{k+1}\right) \leq \frac{\alpha}{2} M+\beta M+\gamma \max \left\{\frac{M}{2}, M, b\left(\frac{M}{2}+d\left(T x_{k}, T z\right)\right)\right\} . \tag{21}
\end{equation*}
$$

Since $b \leq \frac{1}{2}$, by the triangle inequality and (16) we get

$$
\begin{aligned}
b\left(\frac{M}{2}+d\left(T x_{k}, T z\right)\right) & \leq b\left(\frac{M}{2}+d\left(T x_{k}, I z\right)+d(I z, T z)\right) \\
& \leq \frac{1}{2}\left(\frac{M}{2}+\frac{M}{2}+M\right)=M
\end{aligned}
$$

Thus from (21) and (3) we obtain

$$
\begin{equation*}
d\left(T z, T x_{k+1}\right) \leq\left(1-\frac{\alpha}{2}\right) M \tag{22}
\end{equation*}
$$

Again from (2) and (16) we have

$$
\begin{gather*}
d\left(T z, T x_{k}\right) \leq \alpha d\left(I z, T x_{k-1}\right)+\beta M \\
+\gamma \max \left\{d\left(I z, T x_{k-1}\right), M, b\left(\frac{M}{2}+d\left(I x_{k}, T z\right)\right)\right\} \tag{23}
\end{gather*}
$$

Since by the triangle inequality

$$
\begin{aligned}
d\left(I x_{k}, T z\right) & =d\left(T x_{k-1}, T z\right) \leq d\left(T x_{k-1}, I z\right)+d(I z, T z) \\
& \leq d\left(I z, T x_{k-1}\right)+M
\end{aligned}
$$

from (23) we get

$$
\begin{gather*}
d\left(T z, T x_{k}\right) \leq \alpha d\left(I z, T x_{k-1}\right)+\beta M \\
+\gamma \max \left\{d\left(I z, T x_{k-1}\right), M, \frac{1+2 \alpha \beta}{3}\left(\frac{3}{2} M+d\left(I z, T x_{k-1}\right)\right)\right\} . \tag{24}
\end{gather*}
$$

Consider now two possible cases.
Case I. Assume that from (24) we have

$$
d\left(T z, T x_{k}\right) \leq \alpha d\left(I z, T x_{k-1}\right)+\beta M+\gamma d\left(I z, T x_{k-1}\right)
$$

Then by (19) we get

$$
\begin{gather*}
d\left(T z, T x_{k}\right) \leq(\alpha+\beta+\gamma) M+\frac{\alpha \beta \gamma(\alpha+\gamma)}{\beta+\gamma} M \\
=M+\frac{(\alpha \gamma) \alpha \beta+(\beta \gamma) \alpha \gamma}{\beta+\gamma} M . \tag{25}
\end{gather*}
$$

Since (3) implies that $4 \alpha \gamma \leq(1-\beta)^{2}<1,4 \beta \gamma \leq(1-\alpha)^{2}<1$, from (25) we get

$$
d\left(T z, T x_{k}\right)<M+\frac{\alpha \beta+\alpha \gamma}{4(\beta+\gamma)} M=\left(1+\frac{\alpha}{4}\right) M .
$$

Hence we have

$$
\begin{equation*}
d\left(T z, T x_{k}\right)<\left(1+\frac{\alpha}{2}\right) M-\frac{\alpha}{4} M . \tag{26}
\end{equation*}
$$

Thus, from (20) and by (26) and (22), we get

$$
d(I z, T z)<\left(1-\frac{\alpha}{8}\right) \max \left\{d(I z, T z), d\left(I x_{0}, T x_{0}\right)\right\} .
$$

Hence we have, as $\alpha>0$,

$$
\begin{equation*}
d(I z, T z)<\left(1-\frac{\alpha}{8}\right) d\left(I x_{0}, T x_{0}\right) \tag{27}
\end{equation*}
$$

Case II. Assume now that (24) implies

$$
d\left(T z, T x_{k}\right) \leq \alpha d\left(I z, T x_{k-1}\right)+\beta M+\frac{\gamma+2 \alpha \beta \gamma}{3}\left(\frac{3}{2} M+d\left(I z, T x_{k-1}\right)\right) .
$$

Then by (19) we get

$$
\begin{gathered}
d\left(T z, T x_{k}\right) \leq \alpha\left(1+\frac{\alpha \beta \gamma}{\beta+\gamma}\right) M+\beta M+\frac{\gamma+2 \alpha \beta \gamma}{3}\left(\frac{5}{2} M+\frac{\alpha \beta \gamma}{\beta+\gamma} M\right) \\
=\left(\alpha+\beta+\frac{5}{6} \gamma\right) M+\frac{5 \alpha \beta \gamma(\beta+\gamma)+\alpha \beta \gamma(3 \alpha+\gamma+2 \alpha \beta \gamma)}{3(\beta+\gamma)} M .
\end{gathered}
$$

Thus we have

$$
\begin{equation*}
d\left(T z, T x_{k}\right) \leq\left(\alpha+\beta+\frac{5}{6} \gamma\right) M+\frac{L}{6(\beta+\gamma)} M \tag{28}
\end{equation*}
$$

where

$$
\begin{aligned}
L= & 10(\beta \gamma) \alpha \beta+\left(2(\beta \gamma) \alpha \gamma+4(\alpha \gamma) \beta \gamma+4(\alpha \beta) \gamma^{2}\right)+6(\alpha \beta) \alpha \gamma+2(\beta \gamma) \alpha \gamma \\
& +2(\alpha \gamma)(\beta \gamma) \alpha \beta+2(\alpha \beta)(\beta \gamma) \alpha \gamma .
\end{aligned}
$$

Since $\alpha \beta, \alpha \gamma, \beta \gamma \leq \frac{1}{4}$, we get

$$
L \leq \frac{5}{2} \alpha \beta+\frac{5}{2} \alpha \gamma+\beta \gamma+\gamma^{2}+\frac{1}{8} \alpha \beta+\frac{1}{8} \alpha \gamma
$$

Greguš type common fixed point theorems...

$$
=3 \alpha(\beta+\gamma)+\gamma(\beta+\gamma)-\frac{3}{8} \alpha(\beta+\gamma)
$$

Now from (28) we get

$$
d\left(T z, T x_{k}\right) \leq\left(\alpha+\beta+\frac{5}{6} \gamma\right) M+\left(\frac{\alpha}{2}+\frac{\gamma}{6}-\frac{1}{16} \alpha\right) M
$$

Hence, by (3), we have

$$
\begin{equation*}
d\left(T z, T x_{k}\right) \leq\left(1+\frac{\alpha}{2}\right) M-\frac{1}{16} \alpha M \tag{29}
\end{equation*}
$$

Thus, from (20) and by (29) and (22), we get

$$
d(I z, T z)<\left(1-\frac{\alpha}{32}\right) \max \left\{d(I z, T z), d\left(I x_{0}, T x_{0}\right)\right\}
$$

and hence

$$
\begin{equation*}
d(I z, T z)<\left(1-\frac{\alpha}{32}\right) d\left(I x_{0}, T x_{0}\right) \tag{30}
\end{equation*}
$$

Taking in consideration (27) and (30), we conclude that in both cases

$$
d(I z, T z) \leq\left(1-\frac{\alpha}{32}\right) d\left(I x_{0}, T x_{0}\right)
$$

holds.
Generalizing the Jungck's notion of compatibility of two mappings, PATHAK et al. in [20] introduced the concept of compatible mappings of type (T) (type $(I))$ in normed spaces.

Definition 1. Let I and T be mappings from a normed space X into itself. The mappings I and T are said to be compatible of type (T) if

$$
\limsup _{n \rightarrow \infty}\left\|I T x_{n}-I x_{n}\right\|+\limsup _{n \rightarrow \infty}\left\|I T x_{n}-T I x_{n}\right\| \leq \limsup _{n \rightarrow \infty}\left\|T I x_{n}-T x_{n}\right\|
$$

whenever $\left\{x_{n}\right\}$ is a sequence in X such that $\lim _{n \rightarrow \infty} I x_{n}=\lim _{n \rightarrow \infty} T x_{n}=t$ for some $t \in X$. (Note that originally in [20] write lim instead of limsup, but we think that limsup is more convenient.)

Every compatible pair of mappings is a compatible pair of type (T) (see Proposition 2.1 in [20]), but not conversily (see Example 2.1 in [20]).

Now we prove our main result.

Theorem 1. Let Y be an arbitrary non-empty set and (X, d) a metric space of hyperbolic type. Let I and T be two mappings from Y into X, satisfying (2), where α, β, γ, b are as in Lemma 1, and such that $\mathrm{Co}(T(Y)) \subset I(Y)$. Further, suppose that
(I) $T(Y)$ or $I(Y)$ is complete, then I and T have a coincidence point, say $u \in Y$, i.e. such that $T u=I u$, and if $T v=I v$ for some other point $v \in Y$, then $I v=I u$;
(II) Y is a subset of X such that $T(Y)$ is bounded, I is continuous on Y and I and T are compatible mappings of type (T), then T and I have a unique common fixed point in Y and at this point T is continuous.

Proof. By Lemma 1 it follows that I and T satisfy (4). Thus we can choose a sequence $\left\{x_{n}\right\}$ in Y such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(I x_{n}, T x_{n}\right)=0 \tag{31}
\end{equation*}
$$

We show that $\left\{I x_{n}\right\}$ in X is a Cauchy sequence. Denote

$$
r_{n}=d\left(I x_{n}, T x_{n}\right)
$$

Using the triangle inequality, from (2) we have

$$
\begin{gathered}
d\left(I x_{m}, I x_{n}\right) \leq r_{m}+d\left(T x_{m}, T x_{n}\right)+r_{n} \leq r_{m} \\
+r_{n}+\alpha d\left(I x_{m}, I x_{n}\right)+\beta \max \left\{r_{m}, r_{n}\right\} \\
+\gamma \max \left\{d\left(I x_{m}, I x_{n}\right), r_{m}, r_{n}, b\left(d\left(I x_{m}, T x_{n}\right)+d\left(I x_{n}, T x_{m}\right)\right)\right\} .
\end{gathered}
$$

Using again the triangle inequality and take in consideration that $\max \left\{r_{m}, r_{n}\right\} \leq r_{m}+r_{n}$, we get

$$
\begin{align*}
& d\left(I x_{m}, I x_{n}\right) \leq(1+\beta)\left(r_{m}+r_{n}\right)+\alpha d\left(I x_{m}, I x_{n}\right) \\
&+\gamma \max \left\{d\left(I x_{m}, I x_{n}\right), r_{m}, r_{n}, b\left(2 d\left(I x_{m}, I x_{n}\right)+r_{n}+r_{m}\right)\right\} . \tag{32}
\end{align*}
$$

Since $b \leq \frac{1}{2}$, from (32) we get

$$
\begin{gathered}
d\left(I x_{m}, I x_{n}\right) \leq(1+\beta)\left(r_{m}+r_{n}\right)+\alpha d\left(I x_{m}, I x_{n}\right) \\
+\gamma \max \left\{d\left(I x_{m}, I x_{n}\right), r_{m}, r_{n},\left(d\left(I x_{m}, I x_{n}\right)+\frac{1}{2}\left(r_{m}+r_{n}\right)\right)\right\}
\end{gathered}
$$

Hence we have, by (3),

$$
\begin{equation*}
d\left(I x_{m}, I x_{n}\right) \leq \frac{1+\beta+\gamma / 2}{\beta}\left(r_{m}+r_{n}\right) \tag{33}
\end{equation*}
$$

Taking the limit in (33) when $n>m \rightarrow+\infty$ we get, by (31),

$$
\lim _{n>m \rightarrow \infty} d\left(I x_{m}, I x_{n}\right)=0
$$

Thus, $\left\{I x_{n}\right\}$ is a Cauchy sequence in X.
We show (I). Suppose that $I(Y)$ is complete. Then there exists a point $p \in I(Y)$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} I x_{n}=p \tag{34}
\end{equation*}
$$

From (31) it also follows that $\lim _{n \rightarrow \infty} T x_{n}=p$.
Let $u \in Y$ be such that $I u=p$. This can done since $T(Y) \subset I(Y)$. We prove that $T u=p$. From (2) we have

$$
\begin{gathered}
d\left(T u, T x_{n}\right) \leq \alpha d\left(I u, I x_{n}\right)+\beta \max \left\{d(I u, T u), d\left(I x_{n}, T x_{n}\right)\right\} \\
+\gamma \max \left\{d\left(I u, I x_{n}\right), d(I u, T u), d\left(I x_{n}, T x_{n}\right), b\left(d\left(I u, T x_{n}\right)+d\left(I x_{n}, T u\right)\right)\right\} .
\end{gathered}
$$

Passage to the limit as n tends to infinity yelds, by (34),

$$
\begin{equation*}
d(T u, p) \leq(\beta+\gamma) d(T u, p) \tag{35}
\end{equation*}
$$

Since $\beta+\gamma=1-\alpha<1$, from (35) it follows that $d(T u, p)=0$. Hence $T u=p$. Thus we have

$$
\begin{equation*}
T u=I u=p \tag{36}
\end{equation*}
$$

Further, if we assume that $T(Y)$ is complete, we get the same conclusion.
Assume that $v \in Y$ is such that $I v=T v$. Then we get, as $2 b \leq 1$,

$$
\begin{aligned}
d(I v, I u) & =d(T v, T u) \leq \alpha d(I v, I u)+\gamma \max \{d(I u, I v), 2 b d(I v, I u)\} \\
& =(\alpha+\gamma) d(I v, I u)
\end{aligned}
$$

This implies, as $\alpha+\gamma=1-\beta<1$, that $d(I v, I u)=0$. Hence $I v=I u$.
Now we prove (II). Since I is continuous, from (34) it follows

$$
\begin{equation*}
\lim _{n \rightarrow \infty} I I x_{n}=I p \quad \text { and } \quad \lim _{n \rightarrow \infty} I T x_{n}=I p \tag{37}
\end{equation*}
$$

Since I and T are compatible mapping of type (T), by Definition 1, and by (34), (36) and (37) we have

$$
\begin{equation*}
d(I p, p)+\limsup _{n \rightarrow \infty} d\left(T I x_{n}, I p\right) \leq \limsup _{n \rightarrow \infty} d\left(T I x_{n}, T u\right) \tag{38}
\end{equation*}
$$

From (2) and by (36) we get, as $b \leq \frac{1}{2}$,

$$
\begin{gathered}
d\left(T I x_{n}, T u\right) \leq \alpha d\left(I I x_{n}, I u\right)+\beta d\left(I I x_{n}, T I x_{n}\right) \\
+\gamma \max \left\{d\left(I I x_{n}, I u\right), d\left(I I x_{n}, T I x_{n}\right), \frac{1}{2}\left(d\left(I I x_{n}, T u\right)+d\left(I u, T I x_{n}\right)\right)\right\}
\end{gathered}
$$

Using that $d\left(I u, T I x_{n}\right) \leq d(I u, I p)+d\left(T I x_{n}, I p\right)$ and taking the limit superior as $n \rightarrow \infty$, we obtain, by (36) and (37),

$$
\begin{gathered}
\limsup _{n \rightarrow \infty} d\left(T I x_{n}, T u\right) \leq \alpha d(I p, p)+\beta \lim \sup d\left(T I x_{n}, I p\right) \\
+\gamma\left(d(I p, p)+\limsup _{n \rightarrow \infty} d\left(T I x_{n}, I p\right)\right)
\end{gathered}
$$

Hence we get

$$
\begin{gather*}
\limsup _{n \rightarrow \infty} d\left(T I x_{n}, T u\right) \leq(\alpha+\gamma) d(I p, p) \\
\quad+(\beta+\gamma) \limsup _{n \rightarrow \infty} d\left(T I x_{n}, I p\right) . \tag{39}
\end{gather*}
$$

From (38) and (39), and using (3), we obtain

$$
\beta d(I p, p)+\alpha \limsup _{n \rightarrow \infty} d\left(T I x_{n}, I p\right) \leq 0
$$

This implies, as $\alpha>0, \beta>0$, that $d(I p, p)=0$ and $\lim _{n \rightarrow \infty} d\left(T I x_{n}, I p\right)=0$. Hence $I p=p$. Again from (2) we have

$$
\begin{gathered}
d\left(T p, T x_{n}\right) \leq \alpha d\left(I p, I x_{n}\right)+\beta \max \left\{d(I p, T p), d\left(I x_{n}, T x_{n}\right)\right\} \\
+\gamma \max \left\{d\left(I p, I x_{n}\right), d(I p, T p), d\left(I x_{n}, T x_{n}\right), \frac{1}{2}\left(d\left(I p \cdot T x_{n}\right)+d\left(I x_{n}, T p\right)\right)\right\} .
\end{gathered}
$$

Taking the limit as $n \rightarrow \infty$ we get

$$
d(T p, p) \leq(\beta+\gamma) d(T p, p)
$$

Hence, as $\beta+\gamma=1-\alpha<1$, we have $d(T p, p)=0$; hence $T p=p$. Thus we proved that

$$
T p=p=I p
$$

i.e. p is a common fixed point of T and I. Let q be also a common fixed point of T and I. Then, from $d(p, q)=d(T p, T q)$ and (2), we obtain

$$
d(p, q) \leq(\alpha+\gamma) d(p, q)
$$

Since $\beta>0$ implies that $\alpha+\gamma=1-\beta<1$, we have $d(p, q)=0$ and so T and I have a unique common fixed point.

Now we show that T is continuous at p. Let $\left\{y_{n}\right\}$ be a sequence in $Y \subset X$ with the limit p. From (2) we have, as $b \leq \frac{1}{2}$,

$$
\begin{aligned}
d\left(p, T y_{n}\right)= & d\left(T p, T y_{n}\right) \leq \alpha d\left(I p, I y_{n}\right)+\beta d\left(I y_{n}, T y_{n}\right) \\
& +\gamma \max \left\{d\left(I p, I y_{n}\right), d\left(I y_{n}, T y_{n}\right), \frac{1}{2}\left(d\left(I p, T y_{n}\right)+d\left(I y_{n}, T p\right)\right)\right\} \\
\leq & \left.\alpha d\left(p, I y_{n}\right)+\beta\left(I y_{n}, p\right)+d\left(p, T y_{n}\right)\right)+\gamma\left(d\left(I y_{n}, p\right)+d\left(p, T y_{n}\right)\right)
\end{aligned}
$$

and hence, letting n go to infinity, we obtain

$$
\limsup _{n \rightarrow \infty} d\left(p, T y_{n}\right) \leq(\beta+\gamma) \limsup _{n \rightarrow \infty} d\left(p, T y_{n}\right)
$$

As $\beta+\gamma<1$, the last inequality implies

$$
\limsup _{n \rightarrow \infty} d\left(p, T y_{n}\right)=0
$$

and this means that T is continuous at u.
Remark 1. If $b=0$, then the condition (2) becomes the contractive condition of DAVIS [9], but Theorem 1, with $b=0$, is a generalization of Theorem in [9].

Remark 2. Theorem 1 with $\gamma=0$ is a generalization of Theorem of Fisher and Sessa [14] and Jungck [16].

Remark 3. The condition that $\operatorname{Co}(T(Y))$ is contained in $I(Y)$ is necessary in our Theorem 1. This shows the following example.

Example 1. Let X be the set of reals with the usaul distance and $Y=[0,1]$. Define $T, I: Y \rightarrow Y$ as follows:

$$
\begin{aligned}
& T x=1 \text { for } 0 \leq x \leq 1 / 2 \text { and } T x=0 \text { for } 1 / 2<x \leq 1 ; \\
& I x=0 \text { for } 0 \leq x \leq 1 / 2 \text { and } I x=1 \text { for } 1 / 2<x \leq 1 .
\end{aligned}
$$

Then all the assumptions of our Theorem are trivially satisfied except that $\mathrm{Co}(T(Y)) \subseteq I(Y)$, but T and I do not have common fixed points.

Remark 4. The following example shows that our Theorem 1 as a genuine generalizaton of the theorems [6], [12]-[14], [16] and [19].

Example 2. Let $Y=[0,1]$ be the closed unit interval and $T, I: Y \rightarrow Y$ be defined by $T x=x / 4$ and $I x=x^{1 / 2}$. Clearly $\mathrm{Co}[T(Y)] \subseteq I(Y), I$ is continuous and T and I are weakly commutative, hence compatile of type (T). As

$$
d(T x, T y)=1 / 4 \cdot|x-y| \leq 1 / 4 \cdot|x-y| \frac{2}{x^{1 / 2}+y^{1 / 2}}=1 / 2 \cdot d(I x, I y)
$$

for all $x, y \in Y$, we conclude that all the hypotheses of Theorem 1 are satisfed and 0 is a unique common fixed point. But I is neither linear nor nonexpansive.

References

[1] LJ. B. Ćirić, On some discontinuous fixed point mappings in convex metric spaces, Czechoslovak Math. J. 43(118) (1993), 319-326.
[2] LJ. B. Ćirić, On a common fixed point theorem of a Greguš type, Publ. Inst. Math. (Beograd) (49) 63 (1991), 174-178.
[3] Lj. B. Ćirić, On Divicaro, Fisher and Sessa open questions, Arch. Math. T. 29 (1993), 145-152.
[4] LJ. B. Ćirić, On some nonexpansive type mappings and fixed points, Indian J. Pure Appl. Math. 24(3) (1993), 145-149.
[5] LJ. B. Ćirić, Nonexpansive type mappings and a fixed point theorem in convex metric spaces, Rend. Accad. Naz. Sci. XL, Mem. Mat. (5) XIX, (1995), 263-271.
[6] LJ. B. Ćırić, On some mappings in metric spaces and fixed point theorems, Acad. Roy. Belg. Bull. Cl. Sci. (5) T. VI (1995), 81-89.
[7] LJ. B. Ćirić, On nonexpansive type multi-valued mappings, coincidences and fixed points, Bull. Acad. Serbe Sci. Arts Cl. Sci. Math. Natur. No. 21 (1996), 9-17.
[8] LJ. B. ĆIrić, On a generalization of a Greguš fixed point theorem, Czechoslovak Math. J. 50(125) (2000), 449-458.
[9] R. O. Davis, Another version of a common fixed-point theorem, Publ. Math. Debrecen 38 (1991), 237-243.
[10] R. O. Davis and S. Sessa, A common fixed point theorem of Greguš type for compatible mappings, Facta Univ. (Niš), Ser. Math. Inform. 7 (1992), 99-106.
[11] D. Delbosco, O. Ferrero and F. Rossati, Teoremi di punto fisso per applicazioni negli spazi di Banach, Boll. Un. Mat. Ital. (6) 2-A (1983), 297-303.
[12] M. L. Divicaro, B. Fisher and S. Sessa, A common fixed point theorem of Greguš type, Publ. Math. Debrecen 34 (1987), 83-89.
[13] B. Fisher, Common fixed points on a Banach space, Chung Yuan J. 11 (1982), 19-26.
[14] B. Fisher and S. Sessa, On a fixed point theoem of Greguš, Internat. J. Math. Math. Sci. 9, no. 1 (1986), 23-28.
[15] M. Greguš, Jr., A fixed point theorem in Banach space., Boll. Un. Mat. Ital. A 5 (1980), 193-198.
[16] G. Junck, On a fixed point theorem of Fisher and Sessa, Internat J. Math. Math. Sci. 13 (1990), 497-779.
[17] W. A. Kırk, Krasnoselskii's iteration process in hyperbolic spaces, Numer. Func. Anal. Optim. 4 (1982), 371-381.
[18] B. Y. Li, Fixed point theorems of nonexpansive mappings in convex metric spaces, App. Math. Mech. (English edn.) 10 (1989), 183-188.
[19] R. N. Mukherjea and V. Verma, A note on a fixed point theorem of Greguš, Math. Japon. 33 (1988), 745-749.
[20] H. K. Pathak, S. M. Kang, Y. J. Cho and J. S. Jung, Greguš type common fixed point theorems for compatible mappings of type (T) and variational inequalities, Publ. Math. Debrecen 46 (1995), 285-299.
[21] H. K. Pathak and M. S. Khan, Compatible mappings of type (B) and common fixed point theorems of Greguš type, Czechoslovak Math. J. 45 (1995), 685-698.
[22] W. Takahashi, A convexity in metric spaces and nonexpansive mappings I, Kodai Math. Sem. Rep. 22 (1970), 142-149.

LJ. B. ĆIRIĆ
UNIVERSITY OF BELGRADE
ALEKSINACKIH RUDARA $12 / 35$, 11080, BELGRADE
SERBIA
E-mail: Ivulovic@ptt.yu, Iciric@alfa.mas.bg.ac.yu
J. S. UME

DEPARTMENT OF APLIED MATHEMATICS
CHANGWON NATIONAL UNIVERISTY
CHANGWON 641-773
KOREA
E-mail: jsume@sarim.changwon.ac.kr
(Received May 28, 2002; revised June 23, 2003)

[^0]: Mathematics Subject Classification: Primary 47H09, 47H10; Secondary 54H25.
 Key words and phrases: metric space of hyperbolic type, Greguš-type mappings, common fixed-point.
 This work was supported by Korea Research Foundation Grant (KRF-2003-015-C0039).

