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Solving a quartic discriminant form equation

By N. P. SMART (Canterbury)

Abstract. All algebraic integers of discriminant and norm a power of 2 and 3 only
in the quartic field x4 + 12x2 + 18 are calculated. This involves solving a discriminant
form equation of Mahler type.

1. Introduction

We calculate in this paper all the algebraic integers in the number
field K generated by a root, θ, of x4 +12x2 +18 which have discriminant a
product of powers of two and three only. The method used follows that of
[6] and [7]. Effective finiteness results for discriminant form equations of
Mahler type where first given by Győry in a series of papers culminating
in [7]. An earlier non effective finiteness results was given by Birch and
Merriman in [1]. Győry’s result, from which the following method is
derived, is that if f ∈ Z[X] is monic of degree n ≥ 3 and D(f) ∈ S, where
S is the set of numbers divisible by a finite set of primes only. Then f is
Z equivalent to a polynomial f∗ such that

|f∗| ≤ C(S, n).

The resulting large bound will be reduced by the methods of De
Weger, however a complex linear form arises and there is the need to
extend the usual L3 algorithm to the complex case.

In particular we shall prove the following theorem and its corollary.

Theorem 1. All the algebraic integers in the field above with discrim-
inant a power of two and three only are given by

α = r + sθ

where r ∈ Z and s is a power of two and three only.

The author was supported by a SERC postgraduate studentship whilst carrying out
this research.
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Corollary 1. All algebraic integers in the field K defined above with
discriminant and norm a power of two and three only are roots of polyno-
mials of the form

x4 + 22a32b12x2 + 24a34b18.

where a, b ∈ N.

The discriminant form equation considered here is actually an index
form equation of Mahler type. The papers of Gaál, Pethő and Pohst,
[3] and [4], consider the solution of index form equations of Thue type. As
far as we know these are the only other index form equations considered
so far, except for ones coming from Thue-Mahler equations, see [5] and [8].
This work is part of the authors Phd Thesis at Kent and he would like to
thank his suporvisor J. Merriman.

2. The structure of the field

We consider the field of degree 4 generated by a root of the polynomial

g = x4 + 12x2 + 18.

Let g(θ) = 0, then all the roots of g are given by

θ1 = θ, θ2 = −θ, θ3 = 3θ + θ3/3, θ4 = −3θ − θ3/3,

all of which are complex. Let K = Q(θ), then the group Gal(K/Q) is
cyclic, of order four, and is generated by the permutation of roots given
by the cycle (1324). We have DK = 21132 = 18432. The only units in K
of finite order are ±1 and by Dirichlets units theorem there is only one
unit, η, of infinite order. This can easily be calculated (see [10] or [2]) to
be 1 + θ2/3.

If a rational prime, p, decomposes in K into rp prime ideals, ℘i, then
as K is a Galois field we have that ei = ep for all i, where ei is the
ramification index of the prime ideal ℘i. We have rpepfp = n = 4.

Now g does not factorize in Q2 or Q3 so by [2, p 271] we have rp = 1 for
p equal to 2 and 3. Now by [10, p 396] we have that 4− f3 ≤ v3(DK) = 2.
But we can find an element in K of norm 18 so we must have e2 = 4,
f2 = 1 and e3 = 2, f3 = 2.

It can be easily shown, see [10] that the ideal class group is cyclic of
order 2 and is generated by the image of ℘2. As a byproduct we find the
following generators for these ideals, which will be of use later on

℘2
2 = (−2− θ2/3) = (β1),

℘2
3 = (3) = (β2),

℘2℘3 = (−3θ − θ3/3).
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Now let α ∈ K be an algebraic integer. Denote the conjugates of α
by α = α1, α2, α3, α4. Then D(α) is divisible by DK . Our purpose is to
find all such α with D(α) = 2u13u2 . Then Q(α) is contained in K. We
give bounds which allow us to calculate the solution of this problem in the
next section.

3. Generating the bounds

We now show that we are in the following situation.

αj − αi = σγj,i, 1 ≤ i, j ≤ 4, i 6= j(1)

σ = εβa1
1 βa2

2 ,

γj,i = δj,iη
vj,iβ

w1,j,i

1 β
w2,j,i

2 ,

where ε is a unit, ai, wl,j,i ∈ N, vj,i ∈ Z and the δj,i’s are integers of K
such that

(δj,i) = ℘
r1,j,i

2 ℘
r2,j,i

3 , 0 ≤ rl,j,i < hK .

Let U = max(wl,j,i) and V = |vj,i|. Set H = max(U, V ). Then for
explicitly given contants V0 and K0 we show that if H ≥ V0, then H < K0.

To prove this we follow the paper of Győry [7]. By the unique factor-
ization of ideals there exists integers Ul,j,i ∈ N such that for all 1 ≤ i, j ≤ 4
we have

(αj − αi) = ℘
U1,j,i

2 ℘
U2,j,i

3 .

By Euclids algorithm there exists ul,j,i and rl,j,i such that Ul,j,i = hKul,j,i

+ rl,j,i. Therefore there exists units εj,i such that:

αj − αi = δj,iεj,iβ
u1,j,i

1 β
u2,j,i

2 .

There are a finite number of possible δj,i and we set,

c1 = max
δj,i

(
max

1≤i,j≤4
(|δj,i|)

)
= 3.2004.

For l = 1, 2 we set al = min ul,j,i and wl,j,i = al. Also, let εj,i/ε3,1 = ηvj,i .
So we have equation (1) where we have set v3,1 = 0. Choose q 6= 1 such
that V = |vq,1|, if necessary we can obviously relabel the vj,i’s to achieve
this. Trivially, q 6= 3. We now have that γq,1 + γ3,q = γ3,1. Define Λq by

Λq = (γ3,q/γ3,1)− 1 = −γq,1/γ3,1.
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Fix, once and for all, a determination of the complex logarithm. We
consider the linear form

∆(i)
q = ln

(
δ
(i)
3,q

δ
(i)
3,1

)
+ v3,q ln η(i) + (w1,3,q − w1,3,1) ln β

(i)
1

+(w2,3,q − w2,3,1) ln β
(i)
2 + a02π

√−1.

We define

B = max(|v3,q|, |w1,3,q − w1,3,1|, |w2,3,q − w2,3,1|, |a0|).
Note that we have |a0| ≤ 3H +1 and so B ≤ 3H +1. We now obtain from
Waldschmidt’s Theorem, [13], that

|∆(i)
q | > exp(−c2(ln H + c3)).

where c2 = 0.9669 · 1035 and c3 = 3.8666.
We now apply Yu’s Theorem, [14]: to do this we choose b, c, ℘ such

that wt,b,c = U , where t = 1 if ℘ = ℘2 and t = 2 if ℘ = ℘3. Now choose an
a such that wt,a,c = 0: one can do this as due to the action of the cyclic
Galois group. γi,c, γj,c and γb,c are pairwise non-conjugate if and only if
i 6= j 6= b 6= i. If the Galois group were not cyclic we could still apply Yu’s
Theorem with a bit more work.

Let A = γa,b/γa,c and B = γb,c/γa,c so that we have A − 1 = B and
ord℘(B) ≥ hKU − 1 = 2U − 1. Now as U ≥ 1 we have that ℘ | B and
hence ord℘(A) = 0, so δa,b/δa,c = 1. Set T = 1 if t = 2 or T = 2 if t = 1,
then we have

A = ηva,b−va,cβ
wT,a,b−wT,a,c

T .

We now apply Yu’s theorem to obtain ord℘(A− 1) ≤ c5(ln D + c4) where
D = max(|va,b − va,c|, |wT,a,b − wT,a,c|). So D < 2H and hence

2U − 1 ≤ c5(lnH + ln 2 + c4),

giving
U ≤ c5(lnH + c6) = T1(H),

where calculation shows that c5 = 0.9875 · 1019 and c6 = 4.8520.
Choose k such that 1 ≤ k ≤ 4 and |γ(k)

q,1 | = minl |γ(l)
q,1|. If we set

εq = ηvq,1 then we can find a constant c7 = 0.88137 and an index g such
that

| ln |ε(g)
q | | ≥ c7V.

Choose c8 ≤ c7/(4− 1). We take c8 = 0.2203. Then we have five cases to
consider:
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Case 1: V ≤ U . Obviously we have H < T1(H) and so by the Lemma
of Pethő and De Weger, [9], we have

H < 2c5c6 + 2c5 ln(c5) = T2.

Case 2: U ≤ V, ln |γ(k)
q,1 | > −c8V and ln |ε(g)

q | ≥ c7V . Define the
constants c9 and c10 as follows:

c9 = max
i=1,4




2∑

j=1

ln
|N(βj)|
|β(i)

j |


 = 4.3356.

c10 = max
q

(
max
i=1,4

(
ln
|N(δq,1)|
|δ(i)

q,1|

))
= 2.6085.

Then we have c7V ≤ Uc9 + c10 + (4 − 1)c8V . So if we set c11 = c7 − 3c8

we have V ≤ (c9T1(H) + c10)/c11. Hence, again by Pethő and De Weger’s
Lemma, we obtain

H ≤ 2(c10 + c9c5c6 + c9c5 ln(c9c5/c11))/c11 = T3.

Case 3: U ≤ V, ln |γ(k)
q,1 | > −c8V and ln |ε(g)

q | ≤ −c7V . We define c12

by

c12 =
2∑

i=1

ln |βi| = 1.4452.

Then we have that c7V ≤ c8V + c12U + ln c1, which means that

V ≤ (c12U + ln c1)/(c7 − c8) = c13 + c14T1(H).

So we obtain,

H ≤ 2(c13 + c14c5c6 + c14c5 ln(c14c5)) = T4.

Cases 4 and 5: U ≤ V, ln |γ(k)
q,1 | ≤ −c8V . Now as v3,1 = 0 we have

that
ln |Λ(k)

q | ≤ −c8V − ln |γ(k)
3,1 | ≤ −c8V + 3(c12U + ln c1).

Case 4: 3(c12U + ln c1) ≥ 9c8V/10. Then we have that

V ≤ 30(c12U + ln c1)/(9c8) = c16 + c15T1(H)

H ≤ 2(c16 + c5c6c15 + c5c15 ln(c5c15)) = T5.
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Case 5: 3(c12U +ln c1) < 9c8V/10. We have that ln |Λ(k)
q | < −c8V/10

that is |ε∆(k)
q −1| < ε−c8V/10. Now if we assume that V ≥ V0 = 10 ln(3)/c8

then we have

exp(−c2(ln H + c3)) < |∆(k)
q | ≤ 2|ε∆(k)

q − 1| < 2e−c8V/10.

So we have that
H < 10(ln 2 + c2c3 + c2 ln H)/c8 = c17 + c18 ln H,

H < 2(c17 + c18 ln c18) = T6.

Summarissing our conclusions in all five cases, we find that, if H ≥
V0 = 49 then we have, H < max(T2, T3, T4, T5, T6) = 0.7744 · 1039 = K0.

4. Reduction of the bounds

The P -adic Reduction Step
We follow [11] in our treatment of p-adic logarithms, the definition of

which is given there. Choose a, b, c, t, T, ℘ as in the previous application
of Yu’s Theorem. Let ψ = va,b − va,c and ξ = wT,a,b −wT,a,c. Then since
−1 ≤ ord℘(δb,c/δa,c) ≤ 1,

2U − 1 ≤ ε℘ordp(z − 1) ≤ 2U + 1.

There are two cases to consider.
Case A: t = 1.

ln2 η =
1
4

ln2 η4 = 2 + θ2(1 + 2) + 4 + . . . ,

ln2 β2 =
1
2

ln2 β2
2 = 4 + 8 + . . . ∈ Q2.

Case B: t = 2.

ln3 η =
1
8

ln3 η8 = 2.3 + θ2(1 + 2.3) + 9 + . . . .

ln3 β1 =
1
4

ln3 β4
1 = 3 + 9 + . . . ∈ Q3.

In both cases we have, for ap, bp, cp ∈ Qp and bp ≡ 1 mod p,

2U − 1 ≤ εpordp(ψ(ap + bpθ
2) + ξcp) ≤ 2U + 1.

Now by an argument of [11, p22] we obtain

ordp(Λp,i) ≥ (2U − 1)/εp − 1
2
ordp(18432).

where Λp,1 = apψ + cpξ and Λp,2 = bpψ. Hence we obtain the following
reduction step.
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Lemma 2. Choose an m ∈ N such that pm ≥ 2K0 then U ≤ (m+g)/h
where for p = 2 we have h = 1

2 and g = − 23
4 and for p = 3 we have h = 1

and g = − 3
2 .

Proof. Assume otherwise that hU − g ≥ m and so ordp(Λp,2) ≥
hU − g ≥ m. Now as bp ≡ 1 mod p we find that ordp(w) ≥ m and hence
pm | ψ. But this would mean that pm < |ψ| ≤ 2H ≤ 2K0 which is a
contradiction.

Complex Linear Forms In Logarithms And The Complex Reduction
Step

We now give a method to reduce the bounds in Case 5. For each i we
let

∆(i)
q = v3,q ln(η(i)) + a ln(β(i)

1 ) + b ln(β(i)
2 ) + u ln(−3θi − θ3

i /3) + a02π
√−1

where the preceding work imposes the following constraints

|u| ≤ 1, |v3,q| ≤ H, |a| and |b| ≤ U ≤ H, |a0| ≤ H + 2U + 1 and H < K0.

Also, we have from the above discussion that in Case 5,

|∆(i)
q | ≤ 2e−c8H/10.

In order to reduce the bound for H by using this inequality one can
either take the real and imaginary parts of the linear form separately and
use the original L3 algorithm, or one can note that the L3 algorithm can
be extended to the complex case in a straightforward way. We take the
latter approach as experience shows that the former often does not work
because one has to “throw” half the information away. So we apply a
variant of the real reduction step given in [12] or [11], with a different L3

algorithm, to reduce the bound for H. We apply the method 12 times for
each combination of i and u.

The Reduction Process
Currently we have U, V ≤ K0 = 0.775 · 1039. Our reduction process

proceeds as follows:
1) Perform the p-adic reduction step to reduce the bound for U .
2) Examine the various cases given in the above discussion and with

this reduced bound, we can reduce the bound for V . We will not be able
to reduce the bound for V in Case 5.

3) In Case 5 reduce the bound for V using the above process.
4) Repeat steps 1–3 until no further improvement is made.
Firstly we apply Lemma 2 with p = 2 to find 2135 ≥ 2K0 and with

p = 3 we find 385 ≥ 2K0. And hence the bound for U can be reduced
to 258. Note how much this first reduction step reduces the bound for U .
Examining the various cases of the preceding discussion gives:
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Case V ≤
1 V ≤ U 258

2 V ≤ 19.676U + 11.85 5088

3 V ≤ 2.1862U + 1.760 565

4 V ≤ 21.863U + 17.60 5658

We now apply the reduction step for Case 5 to get V ≤ 188. So in
all cases V ≤ 5658 which we take as our new K0. The whole process
is repeated again. Another application of Lemma 2 gives U ≤ 14 and
performing the above analysis we find V ≤ 323 in all cases. Lemma 2 is
performed again to get U ≤ 6, which leads us to deduce that V ≤ 188.
One more application of Lemma 2 gives U ≤ 5. But we cannot reduce the
bound for V any further so our reduction process halts here with the final
bounds: U ≤ 5, V ≤ 188.

We now summarise on what we have deduced so far about the αi’s
and their related exponents;

αj − αi = σγj,i,

σ = εβa1
1 βa2

2 ,

γj,i = (−3θ − θ3/3)λj,iηvj,iβ
w1,j,i

1 β
w2,j,i

2 ,

D(αi) = ±2ui3u2 .

where u1, u2 ∈ N and |λj,i| ≤ 1, |vj,i| ≤ 188 and 0 ≤ wk,j,i ≤ 5. Since two
α’s which differ by a linear equivalence or multiplication by an S-unit are
both solutions if one of them is, we shall only look for solutions, distinct
under these transformations. Therefore if α = a + 2b3cφ with φ an integer
of K, a ∈ Z and b, c ∈ N then we will insist that a = b = c = 0; such an α
will be called reduced.

5. Finding the solution

Firstly we shall have to bound the variables a1, a2. For l = 1 and 2
we have

ord℘`+1


 ∏

1≤i<j≤4

γ2
j,i


 ≤ 12(ord℘`+1(δj,i) + Uel/ord℘`+1(βl)) = τl.

Note that τ1 = 132, τ2 = 72, e1 = 4 and e2 = 2. For l = 1, 2, choose dl to
be the greatest integer such that

(2) ulel − ord℘`+1


 ∏

1≤i<j≤4

γ2
j,i


 ≥ 12dlel
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Now we also have

±2u13u2 = (εβa1
1 βa2

2 )12
∏

1≤i<j≤4

γ2
j,i.

So dl ≥ 0 and by the definition of dl we have that 12(dl + 1)el is greater
than the right hand side of equation (2). This gives, using equation (2),
that

(3)
0 ≤ ulel − 12dlel ≤ 12el + τl

0 ≤ 2al − dlel ≤ el.

Choose ξ such that βa1
1 βa2

2 = 2d13d2ξ. Now ξ is an integer of the field K,
since 2al − dlel ≥ 0 for l = 1, 2. Let χj,i = εξγj,i so that

(4) αj − αi = 2d13d2χj,i.

Note that χi,i = 0. Let A1 = α1 + . . . + α4 and Φi = −∑4
j=1 χj,i. Then

A1 ∈ Z and Φi is an integer of the field K. From equation (4) we then
obtain

4αi = −
4∑

j=1

(2d13d2χj,i − αj) = 2d13d2Φi + A1.

Now if d1 > 2 then we have A1 ≡ 0 mod 4 so αi = A2 + 2d1−23d2Φi
for A2 ∈ Z. Which means that A2 = 0 = d2, d1 = 2, a contradiction since
we have assumed αi reduced. So d1 ≤ 2. Let Φ′i = 2d1Φi. Then Φ′i ≡ A2

mod 4 for some integer A2. So Φ′i = A2 + 4Φ′′i , say, and

4αi = A1 + 3d2(A2 + 4Φ′′i ).

Hence A1 + 3d2A2 ≡ 0 mod 4 which leads us to deduce that for some
A3 ∈ Z,

αi = A3 + 3d2(Φ′i −A2) = (A3 − 3d2A2) + 2d13d2Φi

Again as the αi are reduced we see that d1 = d2 = 0. From this follows,
by the inequalities (3), that a1 ≤ 2 and a2 ≤ 1.

Note that we also have ul ≤ 12 + τl + 12dl and so u1 ≤ 144 and
u2 ≤ 84. Now let ε = ηv and αj − αi = εwj,i. The variable v is then the
last variable which needs to be bounded.

Let T8 = max
i

(±188| ln |η(i)‖) ≈ 165. We find that

ln |w−1
j,i | ≤ T9 = 166.9, ln |wj,i| ≤ T10 = 175.92.

We have then

2u13u2
∏

1≤i<j≤4

w−2
j,i = η12v, ε−T10 ≤ |η|v ≤ 21237εT9

Hence we have −199 ≤ v ≤ 207.
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6. Proof of the theorem

We now have for all i and j such that i 6= j that

(5) αj − αi = ±ηaj,i(−3θ − θ3/3)bj,iβ
cj,i

1 β
dj,i

2

where −387 ≤ aj,i ≤ 395, −1 ≤ bj,i ≤ 1, 0 ≤ cj,i ≤ 7 and 0 ≤ dj,i ≤ 6.
This represents over 130000 cases to consider. Each αi is represented in
the following way with r, s, t, v ∈ Z, (s, t, v) = 1 and deg (αi) = 4:

αi = r + sθi + tθ2
i /3 + vθ3

i /3.

Hence

α1 − α3 = 4t + θ(−2s + 10v) + 2tθ2/3 + (4v − s)θ3/3.

By equating coefficients of powers of θi, we use this equation, with equation
(5), to find a set of possible solution triples (s, t, v). This is easily done
(slowly) with a computer algebra system. We then substitute these into
the discriminant form to test if each triple is actually a solution. This step
takes about 15 Hours CPU time, but after all this computing effort the
only solution is (s, t, v) = ±(1, 0, 0). This proves the Theorem.

Finally, we can also find all quartic integers which lie in the field K
with both discriminant and norm a product of powers of two and three
only which lie in the field K. We have by the above that such an integer
must be of the form α = 2c3d(r + yθ) where (r, y) = 1, y = ±2a3b and
N(r + yθ) = 2n3m for some a, b, c, d, n,m ∈ N. Examining the norm
equation modulo powers of 2 and 3 gives that n ≤ 1 and m ≤ 2. As K is
a totally complex field the solution to this is trivial.

Let Ri = Rε(θi) and Ii = Im(θi). Then for i = 1 or i = 2 or both we
have that

(r + yRi)2 + (yIi)2 ≤ 18

and so |yIi| ≤
√

18. Hence |y| ≤ 3.2 and |r| ≤ 4.2. This gives us an easy
way to deduce that the only possible values of r and y are ±(0, 1). So the
only algebraic integers of degree four in K with discriminant and norm
a product of powers of two and three only are given by the roots of the
polynomial

X4 + 22c32d12X2 + 24c34d18.

We have hence proved the corollary.

7. Computer implementation

All the calculations where performed using the computer algebra pack-
age MAPLE running on a VAX cluster. The main computing power was
expended in the final search for the solutions, which we have already noted
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took 15 hours CPU time. The reduction from the large bounds to the
smaller ones using the L3 algorithm took only 2 hours of CPU time.

The advantage of using a computer algebra system is that the final
step is easy to program, and it is easy to calculate with large integer
numbers or high accuracy floating point ones. However, the (only) draw
back is that a computer algebra system is very inefficient when compared to
an equivalent FORTRAN program, this may lead to a larger than necessary
use of CPU time.

The above method will work (with a few minor modifications) for
all index form equations of Mahler type. Unfortunately for large degree
problems the bounds may become so large that amongst other things the
p-adic logarithms cannot be computed to the required accuracy.
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