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On relatively equilateral polygons inscribed
in a convex body

By MAREK LASSAK (Bydgoszcz)

Abstract. Let C ⊂ E2 be a convex body. The C-length of a segment is the
ratio of its length to the half of the length of a longest parallel chord of C. By a
relatively equilateral polygon inscribed in C we mean an inscribed convex polygon
all of whose sides are of equal C-length. We prove that for every boundary point
x of C and every integer k ≥ 3 there exists a relatively equilateral k-gon with
vertex x inscribed in C. We discuss the C-length of sides of relatively equilateral
k-gons inscribed in C and we reformulate this question in terms of packing C by
k homothetical copies which touch the boundary of C.

Let C be a convex body in Euclidean n-space En. If pq is a longest
chord of C in a direction l, we say that points p and q are opposite and we
call pq a diametral chord of C in direction l. By the C-distance distC(a, b)
of a and b we mean the ratio of the Euclidean distance |ab| of a and b

to the half of the Euclidean distance of end-points of a diametral chord
of C parallel to ab (comp. [7]). We use here the term relative distance if
there is no doubt about C. By the C-length of the segment ab we mean
distC(a, b). If C ⊂ E2, we define a C-equilateral k-gon as a convex k-gon
all of whose sides have equal C-lengths. We also use the name relatively
equilateral k-gon when C is fixed.

Section 1 is of an auxiliary nature. It presents properties of the C-
distance, and especially properties of the C-distance of boundary points
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of C. Section 2 discusses the possibility of inscribing relatively equilateral
k-gons in a planar convex body C. Section 3 shows that such a possibility
can be equivalently expressed in terms of finding k positive homothetical
copies of C which touch the boundary of C from inside (and also in terms
of finding k negative homothetical copies of C which touch C) in such a
way that every two consecutive copies touch.

1. Properties of relative distance
and diametral chords

Lemmas 3–7 in this section speak about the relative distance of some
boundary points of a planar strictly convex body. They are needed for the
proofs of Theorems 1 and 2, in which we first deal with a strictly convex
body, and later apply the well known fact that every convex body in En

is a limit of a sequence of strictly and smooth convex bodies containing
this body (for a proof see [4], pp. 69–71). This explains why we present
Lemma 2 about the continuity of the relative distance. In fact, Lemma 2 is
also applied for the proofs of Lemmas 3–7. We start with Lemma 1 which
collects some known or easy-to-show properties of diametral chords which
are applied in this paper.

Lemma 1. Let C ⊂ E2 be a convex body. If ab is a diametral chord of

direction l, then there exist parallel supporting lines of C at a and b. The

Euclidean length of the diametral chord changes continuously as l rotates.

If C is strictly convex, the diametral chord in each direction is unique. If

C is smooth, the supporting lines at the end-points of each C-diametral

chord are unique. If C is strictly convex and smooth and if the direction

of the diametral chord rotates counterclockwise, then the direction of the

supporting lines at the end-points of this segment also change counter-

clockwise. If C is strictly convex, then every two C-diametral chords have

a common point.

Observe that the C-distance of any two points is equal to their
(

1
2C +

1
2(−C)

)
-distance. The body 1

2C + 1
2 (−C) is centrally symmetric. Thus it

is the unit ball of a normed space. So for each convex body C ⊂ En the
Euclidean length of diametral chords of C in direction l is a continuous
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function of l and thus the relative distance distC(x, y) is a continuous
function of variables x and y. We need the following more general fact.

Lemma 2. The relative distance distC(x, y) is a continuous function

of x, y and C.

In order to prove Lemma 2, we reformulate it in a convenient form:
if a sequence of convex bodies C1, C2, . . . tends to a convex body C, if a
sequence a1, a2, . . . of points tends to a, and if a sequence b1, b2, . . . of
points tends to b, then lim distCi(ai, bi) = distC(a, b). In order to show
this, in Ci we find a Ci-diametral chord a′ib

′
i such that

−−→
aibi and

−−→
a′ib

′
i have

the same orientation. Then in Di = 1
2Ci + 1

2(−Ci) we find its translation
a∗i b

∗
i centered at the center of Di. Since the sequence

−−→
a1b1,

−−→
a2b2, . . . tends

to
−→
ab and since D1,D2, . . . tends to D = 1

2C + 1
2(−C), we conclude that

a∗1, a∗2, . . . tends to a boundary point a∗ of D, that b∗1, b∗2, . . . tends to
a boundary point b∗ of D, and that a∗b∗ is parallel to ab. Of course,
lim |aibi| = |ab| and lim |a′ib′i| = lim |a∗i b∗i | = |a∗b∗|. Moreover, a translate
of a∗b∗ is a diametral chord of C parallel to ab. Thus lim distCi(ai, bi) =
distC(a, b).

A number of properties in the forthcoming lemmas are formulated for
the counterclockwise order. Clearly, analogous properties hold true for the
clockwise order.

Two points of the boundary of a convex body C are called opposite
if they are in opposite parallel supporting lines of C. For every boundary
point x of a planar convex body C denote by x+ the first boundary point
of C counted in the counterclockwise order such that x and x+ are opposite.
We call x+ the first opposite point to the point x.

Lemmas 3–6, below, generalize analogous results proved in [3] under
the assumption of central symmetry of C. This special case of Lemma 3
is also given in [9].

Lemma 3. Let x be a boundary point of a strictly convex body C ⊂
E2. If a point y moves counterclockwise in the boundary of C from x to x+,

then its relative distance from x increases all the time and it accepts all

values from the interval [0, 2].

Proof. In order to prove the first statement, it is sufficient to show
that if y1, y2 are different points in the boundary of C such that x, y1,
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y2, x+ are counterclockwise ordered points in the boundary of C, then
distC(x, y1) < distC(x, y2).

Denote by ab2 the C-diametral chord parallel to xy2. The notation
is chosen such that

−→
ab2 and −→xy2 have the same orientation. Since the C-

diametral chords xx+ and ab2 intersect, the three boundary points x, y1,
y2 are on one side of the segment ab2. From the strict convexity of C and
since ab2 is a C-diametral chord we see that the straight lines containing
the segments ax and b2y2 intersect at a point h. Denote by b1 the boundary
point of C such that the segments ab1 and xy1 are parallel.

Case 1, when y2, b1, b2 are in counterclockwise order in the boundary
of C (we include the case b1 = y2).

The assumption of this case implies that the segments y2b2 and ab1

intersect at a point t (see Figure 1). Moreover, the straight line through
x and y1 intersects the segment y2h at a point w. Thanks to the strict
convexity of C, the point y1 is strictly between x and w. Thus we have
distC(x, y1) < distC(x,w) ≤ 2 · |xw|

|ab1| ≤ 2 · |xw|
|at| = 2 · |xh|

|ah| = 2 · |xy2|
|ab2| =

distC(x, y2).
Case 2, when y1, b1, y2 are in counterclockwise order in the boundary

of C (this time we assume that b1 �= y2).
Provide the straight line containing b1y2 (see Figure 2). From the

assumptions of Case 2 and from the strict convexity of C we conclude that
this line intersects the segment xh at a point g �= h and that it intersects
the line containing xy1 at a point u such that y1 is strictly between x and u.
Consequently, distC(x, y1) ≤ 2 · |xy1|

|ab1| < 2 · |xu|
|ab1| = 2 · |xg|

|ag| < 2 · |xg|+|gh|
|ag|+|gh| =

2 · |xh|
|ah| = 2 · |xy2|

|ab2| = distC(x, y2). This ends the consideration of Case 2.
Since in both cases distC(x, y1) < distC(x, y2), we see that the relative

distance distC(x, y) increases all the time when y moves counterclockwise
from x to x+.

From Lemma 2 we see that distC(x, y) is a continuous function of y.
So the relative distance of x and y attains all values from [0, 2] when y

moves from x to x+. �

Lemma 3 implies Lemma 4. Note that Lemma 4 defines a point fd(x).

Lemma 4. Let x be a boundary point of a strictly convex body C ⊂
E2. For every d ∈ [0, 2] there is exactly one point fd(x) in the boundary



On relatively equilateral polygons inscribed in a convex body 137

Figure 1

Figure 2

of C such that distC(x, fd(x)) = d and such that x, fd(x), x+ are in the

counterclockwise order in the boundary of C.

From the second part of Lemma 3 and from Lemma 4 we obtain
Lemma 5.

Lemma 5. Let C be a strictly convex body in the plane. For every

fixed boundary point x of C the function fd(x) is a continuous function

of the variable d. When d grows from 0 to 2, then the point fd(x) moves

counterclockwise and continuously without any stop in the boundary of C

from x to x+.
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Lemma 6. Let x be a boundary point of a strictly convex body C

in the plane. If x, u1, w1, w2, u2, x+ are counterclockwise ordered points

in the boundary of C such that u1 and u2 are not opposite, and such

that the segments u1u2 and w1w2 do not coincide, then distC(w1, w2) <

distC(u1, u2).

Proof. If u1u2 and w1w2 are parallel, by the strict convexity of C

and since the segments do not coincide, we have |w1w2| < |u1u2|, which
gives distC(w1, w2) < distC(u1, u2). If u1u2 and w1w2 are not parallel,
we provide the segment w′

1w
′
2 parallel to u1u2 which separates u1u2 from

w1w2, and such that w′
1 = w1 or w′

2 = w2. We have distC(w′
1, w

′
2) ≤

distC(u1, u2). Moreover, by Lemma 3 (or by its clockwise version to-
gether with the assumption that u1 and u2 are not opposite), we get
distC(w1, w2) < distC(w′

1, w
′
2). Both the inequalities give the inequality

promised in Lemma 6. �

Modifications of Lemmas 3 and 6 hold true when C is a convex body,
and not necessarily strictly convex. Then in Lemma 3 we can claim
that distC(x, y) is nondecreasing. In Lemma 6 we have distC(w1, w2) ≤
distC(u1, u2).

By recursion, for every strictly convex body C ⊂ E2 we put f0
d (x) = x

and fm
d (x) = fd

(
fm−1

d (x)
)

for m = 1, 2, . . . . By Lemma 4, for any fixed
strictly convex body C ⊂ E2, for every boundary point x of C, for every
integer k ≥ 0, and for every d ∈ [0, 2], the point fk

d (x) is uniquely defined.
From Lemma 5 we obtain the following Lemma 7.

Lemma 7. Let C ⊂ E2 be a strictly convex body, let x be a boundary

point of C and let k ≥ 1 be an integer. When d grows continuously from 0
to 2, the point fk

d (x) moves counterclockwise and continuously without

any stop in the boundary of C.

2. Relatively equilateral polygons
inscribed in a convex body

The following Theorem 1 generalizes the analogous result which is
proved in [3] under the assumption of central symmetry of C.
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Theorem 1. Let C ⊂ E2 be a convex body and let k ≥ 3 be an

integer. For every boundary point x of C there exists a relatively equilat-

eral k-gon inscribed in C with vertex x. If C is strictly convex, such an

inscribed C-equilateral k-gon is unique.

Proof. Case 1, when C is strictly convex. Put xm = fm−1
d (x) for

m = 1, 2, . . . . From Lemma 7 we see that for m = 2, . . . , k the positions
of the points xm depend continuously on d ∈ [0, 2]. The smallest value
of d ∈ (0, 2) such that xk+1 = x1 gives the relatively equilateral k-gon
x1x2 . . . xk that we are looking for. It remains to show that such a smallest
value of d exists, i.e. that xk+1 = x1 for a d < 2. It is sufficient to
consider the case when k = 3. If f2

2 (x) = x, it is obvious by Lemma 7. In
the opposite case, Lemma 1 implies that C contains the non-degenerate
triangle xf1

2 (x)f2
2 (x), and f3

2 (x) is in the arc of C which starts at x and
ends at f1

2 (x). By Lemma 7 there is a d < 2 such that f3
d (x) = x.

This construction gives exactly one relatively equilateral k-gon with
vertex x inscribed in C. An analogous procedure for the clockwise order
also gives exactly one inscribed relatively equilateral k-gon. Since each of
those k-gons is unique, we see that they coincide.

Case 2, when C is an arbitrary convex body. We present C as a
limit of a sequence of strictly convex bodies C1, C2, . . . . Let p i 1 be a
boundary point of Ci in the smallest Euclidean distance from x. Clearly,
the sequence p 1 1, p 2 1, . . . tends to x. By Case 1 for every i ∈ {1, 2, . . . }
there exists a relatively equilateral k-gon Pi = p i 1p i 2 . . . p i k inscribed in
Ci. By compactness arguments, from the sequence of indices i = 1, 2, . . .
it is possible to select a subsequence for which the sequence of the second
vertices of the corresponding k-gons converges to a point p2. Clearly, p2 is
a boundary point of C. We repeat k− 2 times the procedure of selecting a
convergent subsequence from the previously obtained subsequence; during
the m-th selection we deal with m-th vertices of the previously selected
k-gons. As a result, we obtain points p3, . . . , pk which are consecutive
vertices of a convex k-gon P = xp2 . . . pk inscribed in C. Since P is the
limit of a subsequence of the sequence P1, P2, . . . and since Pi is a Ci-
equilateral k-gon inscribed in Ci, from Lemma 2 we conclude that P is a
C-equilateral k-gon inscribed in C. �

In Theorem 1 we do not claim that the relatively equilateral k-gon
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with a given vertex is unique when C is not strictly convex. Also the
length of the sides may vary. For instance, when x is any boundary point
of a triangle T . If x is a vertex of T , the C-length of sides of inscribed
T -equilateral triangles varies from 0 to 2. If x is strictly between vertices
v1 and v2 of T , we have infinitely many relatively equilateral triangles of
the T -length of sides equal to distC(x, v1) (equal to distC(x, v2)) inscribed
in T . Applying Lemma 6 and the comment after it one can show that all
relatively equilateral k-gons with k ≥ 4 inscribed in any planar convex body
C which have a common vertex are of equal C-length of sides.

Theorem 2. Assume that there exists a convex k-gon contained in a

convex body C ⊂ E2 all of whose sides have C-lengths at least d. Then we

can inscribe in C a relatively equilateral k-gon whose sides have C-length

at least d.

Proof. Case 1, when C is smooth and strictly convex. Consider a
side ab of a convex polygon P contained in C. We provide the diametral
chord a1b1 in C parallel to the segment ab. Let the notation be chosen
such that the segments a1b and b1a intersect (see Figure 3). Of course, a1,
b1 are boundary points of C. Denote by A1, B1 the supporting straight
lines of C through a1 and b1, respectively. By Lemma 1 they are parallel.

Through a and b we provide straight lines A and B parallel to A1

and B1. There is a boundary point a2 of C in A and a boundary point
b2 of C in B such that the interior of the quadrangle abb2a2 is disjoint
with P . Thanks to the strict convexity of C the segment a2b2 is deter-
mined uniquely. We call it the C-projection of the side ab of P on the
boundary of C. Since ab is parallel to a1b1, and since there is no seg-
ment in C of greater C-length connecting the lines A1 and B1, we see that
distC(a2, b2) ≥ distC(a, b).

From the above construction and from the part of Lemma 1 which
says that the direction of the supporting lines of C at the endpoints of
the C-diametral chord changes counterclockwise we conclude that the C-
projections of different sides of P on the boundary of C do not have com-
mon interior points. Consider the k-gon w1w2 . . . wk inscribed in C whose
vertices are the first points of the segments being the C-projections of the
sides of P when we go counterclockwise. By Lemma 3 all its sides are of
C-lengths at least d. Take into account points fm

d (w1) for m = 2, . . . , k.
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Figure 3

By Lemmas 3 and 6, for every m ∈ {2, . . . , k}, points w1, f
m
d (w1), wm are

in the counterclockwise order in the boundary of C. Thus fk
d (w1) = w1

or fk
d (w1) “has not arrived yet” to w1. The first possibility means that

w1f
1
d (w1) . . . fk−1

d (w1) is the promised inscribed k-gon, and for the sec-
ond possibility we apply Lemma 7 increasing d until we find the smallest
c ∈ (d, 2) for which fk

c (w1) = w1.
Case 2, when C is an arbitrary convex body. We present C as a limit of

a sequence C1, C2, . . . of strictly and smooth convex bodies containing C.
For every body Ci we apply Case 1; we inscribe in Ci a Ci-equilateral k-
gon Pi = p i 1p i 2 . . . p i k, whose sides have Ci-lengths at least d where i =
1, 2, . . . . Then, successively k times, we select subsequences of polygons.
During the j-th selection, where j = 1, 2, . . . , k, we take care in order to
get the convergence of the j-th vertices to a point vj . Finally we obtain a
convex k-gon V = v1v2 . . . vk. Since the sequence C1, C2, . . . tends to C,
the k-gon V is inscribed in C. Lemma 2 implies that V is a relatively
equilateral k-gon inscribed in C. �

Lemma 3 with its clockwise version and the comment after Lemma 6
imply Claim 1.

Claim 1. Let P be a relatively equilateral polygon of sides of C-length

d inscribed in a convex body C ⊂ E2. Then every pair of vertices of P

is in C-distance at least d. If C is strictly convex, then the C-distance of

every non-consecutive pair of vertices is over d.
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Inscribed relatively equilateral triangles. Bezdek, Fodor and
Talata [1] show that the boundary of every convex body C contains three
points in pairwise C-distances at least 4

3 , and at least 1.546 provided C is
a centrally symmetric convex body. Lángi [5] improves the first estimate
up to 1

5 (2 + 2
√

6) ≈ 1.38. The second estimate is improved up to 1 +
1
3

√
3 ≈ 1.577 in [8]. So from Theorem 2 we conclude that in every convex

body C we can inscribe a relatively equilateral triangle of sides C-length
at least 1

5 (2 + 2
√

6) ≈ 1.38 and at least 1 + 1
3

√
3 ≈ 1.577 when C is

centrally symmetric. A conjecture from [7] is that in every convex body C

we can inscribe a relatively equilateral triangle of sides of C-length at least
1
2(1+

√
5) ≈ 1.618. The case when C is a regular pentagon shows that this

value cannot be increased. Another conjecture says that if C is centrally
symmetric, then in C we can inscribe a relatively equilateral triangle of
sides of C-length at least 1 + 1

2

√
2 ≈ 1.707 (see [3] and [7]). This value is

attained for the regular octagon.

Inscribed relatively equilateral quadrangles and pentagons.
From the proof of Theorem in [7] we see that every planar convex body
contains four points in relative distances at least 1. Doliwka [2] improved
this by showing that the boundary of every planar convex body contains
five points in relative distances at least 1. Thus from Theorem 2 we see
that in every convex body we can inscribe a relatively equilateral quad-
rangle and a relatively equilateral pentagon of sides of relative length at
least 1. Both the estimates cannot be improved as it follows from the ex-
ample of a triangle. The second estimate cannot be improved also under
the assumption of central-symmetry as it results from the example of a
parallelogram. Every centrally symmetric convex body C permits to in-
scribe a relatively equilateral quadrangle of sides of C-length at least

√
2,

and this value cannot be improved for the usual disk as C (see [3] and [7]).

Inscribed relatively equilateral hexagons. Every lower estimate
of the C-length of sides of a triangle which can be inscribed in C induces an
estimate half as big for the C-length of the sides of a relatively equilateral
hexagon which can be inscribed in C. We just take the vertices and the
midpoints of sides of the triangle and we apply our Theorem 2. So from
the above estimates for large triangles we obtain that every convex body
C permits to inscribe a relatively equilateral hexagon of sides of C-length
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at least 2
3 (respectively, at least 1

5(1 +
√

6 ) ≈ 0.69). We conjecture that
the worst convex body for inscribing a large relatively equilateral hexagon
is the regular pentagon (see also Figure 6 and the comment to it). In every
centrally symmetric convex body C we can inscribe a relatively equilateral
hexagon of sides of C-length 1; of course, as the hexagon we can take any
affine-regular hexagon inscribed in C (cf. [7] and [3]). What is more, this
estimate is sharp [3].

Inscribed relatively equilateral heptagons. Lángi [5] proves
that each convex body C permits to inscribe a relatively equilateral hep-
tagon of sides of C-length at least 2

3 . This cannot be improved for triangles.

Inscribed relatively equilateral octagons, nonagons and de-
cagons. As previously for triangles, from the estimates about the C-length
of sides of C-equilateral quadrangles and pentagons which can be inscribed
in a convex body C we obtain two times smaller estimates about the C-
length of sides of relatively C-equilateral octagons, nonagons and decagons.
Again we take vertices and midpoints of sides. So we can inscribe in C a
relatively equilateral octagon, nonagon and decagon of sides of C-length at
least 1

2 . The last estimate cannot be improved as we see from the example
of a triangle.

Probably, besides some exceptional values of k, triangles are the worst
convex bodies for inscribing relatively equilateral k-gons of sides of large
relative length. Such exponential values are for instance k = 3 and k = 6.
In both cases the regular pentagon is a counterexample.

3. Homothetical copies
touching the boundary of the body

We say that a convex body touches another convex body if the two
bodies have non-empty intersection and empty intersection of their interi-
ors. We say that a convex body A touches the boundary of a convex body
C from inside if A ⊂ C and if the intersection of A with the boundary of
C is non-empty.

Clearly, when we speak about two consecutive vertices of a convex k-
gon p1 . . . pk, we mean any pair of vertices pi, pi+1 for i ∈ {1, . . . , k − 1},
and also the pair pk, p1. Below we consider homothetical copies of a



144 Marek Lassak

convex body C whose homothety centers are at such vertices p1, . . . , pk.
If two homothety centers are consecutive vertices, then the corresponding
homothetical copies of C are called consecutive.

Claim 2. If the homothety center is in the boundary of a convex body

C ⊂ En, then every homothetical copy of C with a positive ratio at most 1
touches the boundary of C from inside, and every homothetical copy of C

with a negative ratio touches C.

Since the homothety center x is in the boundary of C, Claim 2 results
from the following obvious facts. If the ratio is between 0 and 1, the copy
is a subset of C. Every negative homothetic copy of C is on the opposite
side of any supporting line of C at x.

Lemma 8. Let C ⊂ En be a convex body and let x, y ∈ En. The

following conditions (i)–(iii) are equivalent for every d ∈ (0, 2). Conditions

(i) and (ii) are equivalent also for d = 2.

(i) distC(x, y) = d,

(ii) homothetical copies of C with centers x, y and ratio d
2+d touch,

(iii) homothetical copies of C with centers x, y and ratio − d
2−d touch.

Proof. We can easily show the following generalization of Lemma 2
from [6]: if xy and ab are parallel segments in En and if d= 2(|xy| / |ab|)< 2,
then the two segments S1 and S2 being homothetical copies of the segment
ab with homothety centers x and y have exactly one common point if and
only if the homothety ratio is d

2+d or − d
2−d . For ab we take a diametral

chord parallel to xy such that the vectors
−→
ab and −→xy have the same orienta-

tion. Although our consideration is general, in Figure 4 we see the special
situation (like in the forthcoming Theorem 3) when x and y are boundary
points of C. In the case of the positive homothety ratio d

2+d the segments
S1 and S2 are gw and wh as in Figure 4. Here w is the homothetic image
(with ratio d

2+d ) of a and homothety center y, and also of b and the ho-
mothety center x. In the case of the negative homothety ratio − d

2−d the
segments S1 and S2 are du and uc as in Figure 4. Now u is the homothetic
image (with ratio − d

2−d) of a and homothety center x, and also it is the
homothety image of b with center y. Moreover, since ab is a C-diametral
chord of C, from Lemma 1 we see that at a and b we can provide parallel
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Figure 4

supporting lines of C. Consequently, the pair of homothetic copies of C

with centers x, y and the ratio d
2+d (respectively, with the ratio − d

2−d) is
separated by a straight line through w (respectively, through u).

From the above consideration we see that the condition (i) implies
conditions (ii) and (iii). If (i) does not hold true, then distC(x, y) �= d

which implies that the considered pair of homothetical copies with ratio
d

2+d (with ratio − d
2−d) has empty intersection or that the intersection of

their interiors is non-empty, i.e. that (ii) and that (iii) do not hold true.
The equivalence of (i) and (ii) for d = 2 is obvious. �

From Lemma 8 we obtain Theorem 3.

Theorem 3. Let C be a convex body in E2, let p1p2 . . . pk be a convex

polygon inscribed in C and let d ∈ (0, 2). The following conditions are

equivalent. The equivalence of (i) and (ii) is true also for d = 2.

(i) p1p2 . . . pk is a relatively equilateral k-gon of side of C-length d,

(ii) every two consecutive from the homothetical copies of C of ratio d
2+d

and homothety centers p1, p2, . . . , pk touch,

(iii) every two consecutive from the homothetical copies of C of ratio − d
2−d

and homothety centers p1, p2, . . . , pk touch.
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Figure 5

Having in mind Claim 2, we illustrate Theorem 3 in Figure 5. Simi-
larly we show that for boundary points p1, p2, . . . , pk of any convex body
C ⊂ En the following conditions are equivalent: (i) pairwise relative dis-
tances of points p1, p2 . . . , pk are at least (at most) d, (ii) homothetical
copies of C of ratio d

2+d and homothety centers p1, p2, . . . , pk are packed
in C (respectively: they pairwise intersect), (iii) homothetical copies of C

of ratio − d
2−d and homothety centers p1, p2, . . . , pk have pairwise disjoint

interiors (respectively: they pairwise intersect).
This equivalence explains why we introduce the following three number

characteristics for any integer k ≥ 2 and every convex body C ⊂ En, and
why we present Claim 3. We define dC(k) as the greatest value v such that
there exist k boundary points of C in pairwise C-distances at least v. By
rC(k) we mean the greatest ratio of k homothetical copies of C which can
be packed in C and which touch the boundary of C from inside. Let sC(k)
denote the smallest possible negative ratio of k homothetical copies of C

which touch C and which have pairwise disjoint interiors. If such a smallest
ratio does not exist, we put sC(k) = −∞. Simple compactness arguments
show that dC(k), rC(k) and sC(k) exist. We have 0 < dC(k) ≤ 2 and
0 < rC(k) ≤ 1

2 . Moreover, −∞ < sC(k) < 0 or rC(k) = −∞.

By Theorem 2 and Claim 1, for n = 2 the number dC(k) equals to the
greatest possible C-length of sides of a relatively equilateral k-gon inscribed
in C. Also the values of rC(k) and sC(k) do not change by adding the
requirement that every two consecutive copies touch.



On relatively equilateral polygons inscribed in a convex body 147

Figure 6

From the equivalence presented after Theorem 3 we obtain the follow-
ing property.

Claim 3. Let C ⊂ En be a convex body and let k ≥ 2 be an integer.

We have rC(k) = dC(k)
2+dC(k) . For dC(k) < 2 we have sC(k) = − dC(k)

2−dC(k) , and

for dC(k) = 2 we have sC(k) = −∞. Conversely: dC(k) = 2rC(k)
1−rC(k) , and

dC(k) = 2sC(k)
sC(k)−1 for sC(k) �= −∞ with dC(k) = 2 provided sC(k) = −∞.

Theorem 3 with the comment after it and also Claim 3 permit to
reformulate facts and conjectures about configurations of points in some
C-distances in terms of packing positive (or placing egative) homothetical
copies of C. Just for example, the earlier mentioned conjecture that the
regular pentagon is the worst planar convex body for inscribing in it a
large relatively equilateral hexagon is illustrated in Figure 6 in terms of
packing positive homothetical copies which touch from inside the boundary
of the pentagon and such that every consecutive pair touches. The left
figure gives probably the best such a packing of the regular pentagon by 6
copies. The ratio is about 0.32. Claim 3 implies that the relative length of
the sides of the corresponding inscribed relatively equilateral hexagon is
about 0.94. In the right figure the ratio is smaller than on the left figure.
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