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Perturbation theorems for upper and lower semi-Fredholm
linear relations

By TERESA ÁLVAREZ (Oviedo)

Abstract. In the setting of Banach spaces it follows from the classical per-
turbation results that a closed semi-Fredholm operator retains its index under
strictly singular with strictly singular adjoint or small perturbations. In this pa-
per we obtain generalisations to multivalued linear operators in normed spaces of
the results of the type mentionated above. Examples are exhibited proving that
these results are not valid in arbitrary normed spaces.

1. Introduction

Several authors [6], [9], [13]–[15], [18], etc. have studied the stability
of the index of a closed upper or lower semi-Fredholm operator under
either strictly singular or small perturbations. However, in many cases the
perturbation theorems are given for the case when the normed spaces are
complete. It is the purpose of this paper to extend this study to linear
relations in normed spaces not necessarily complete.

Notations. We adhered to the notation and terminology of the book
[5]: X, Y, . . . are normed spaces, BX the closed unit ball of X, X ′ the dual
space of X. If M ⊆ X and N ⊆ X ′ are subspaces, then M⊥ = {x′ ∈ X ′ :
x′(x) = 0 for all x ∈ M}, N� = {x ∈ X : x′(x) = 0 for all x′ ∈ N}.
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A multivalued linear operator T : X → Y is a set valued map such
that its graph G(T ) := {(x, y) ∈ X ×Y : x ∈ D(T ), y ∈ Tx} is a subspace
of X × Y .

We use the term linear relation or simply relation to refer to such a
multivalued linear operator denoted T ∈ LR(X,Y ). If T maps the points
of its domain D(T ) to singletons, then T is said to be a single valued linear
operator or simply operator.

Let M be a subspace of D(T ). Then the restricti T |M is defined by
G(T |M ) = {(m, y) : m ∈ M, y ∈ Tm}. For any subspace M of X such
that D(T ) ∩ M �= ∅, we write T |M∩D(T ) = T |M . The inverse of T is the
linear relation T−1 defined by G(T−1) = {(y, x) ∈ Y ×X : (x, y) ∈ G(T )}.
If T−1 is single valued, then T is called injective, that is, T is injective if
and only if its null space N(T ) := T−1(0) = {0}, T is said to be surjective
if its range R(T ) := TD(T ) = Y . The completion of T , denoted by T̃ , is
defined by G(T̃ ) := G̃(T ) ⊆ X̃ × Ỹ , where X̃ denotes the completion of
X. For T ∈ LR(X,Y ) we define α(T ) := dimN(T ), β(T ) := dimY/R(T ),
β(T ) := dim Y/R(T ). The index (respectively, reduced index ) of T is
defined as i(T ) = α(T )−β(T ) (respectively, i(T ) = α(T )−β(T )) provided
α(T ) and β(T ) (respectively, α(T ) and β(T )) are not both infinite. If
α(T ) = β(T ) = ∞ (respectively, α(T ) = β(T ) = ∞) then T is said to have
no index (respectively, reduced index).

The adjoint or conjugate T ′ of T is defined by G(T ′) := G(−T−1)⊥ ⊆
Y ′×X ′, where 〈(y, x), (y′, x′)〉 := 〈x, x′〉+〈y, y′〉. This means that (y′, x′) ∈
G(T ′) if and only if y′(y) − x′(x) = 0 for all (x, y) ∈ G(T ).

For a given closed subspace E of X let QX
E or simply QE denote the

natural quotient map from X onto X/E. We shall denote QY
T (0)

by QT .

Clearly QT T is single valued. For x ∈ D(T ), ‖Tx‖ := ‖QT Tx‖ and the
norm of T is defined by ‖T‖ := ‖QT T‖.

A linear relation T ∈ LR(X,Y ) is said to be closed if its graph is a
closed subspace, continuous if for each neighbourhood V in R(T ), T−1(V )
is a neighbourhood in D(T ) equivalently ‖T‖ < ∞, open if T−1 is con-
tinuous equivalently γ(T ) > 0 where γ(T ) is the minimum modulus of T

defined by γ(T ) := sup{λ ≥ 0 : λd(x,N(T )) ≤ ‖Tx‖ for x ∈ D(T )}, com-
pact if QT TBD(T ) is compact, precompact if QT TBD(T ) is totally bounded,
strictly singular if there is no infinite dimensional subspace M of D(T ) for
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which T |M is injective and open, F+ if there exists a finite codimensional
subspace E of X such that T |E∩D(T ) is injective and open and T is called
F− if its adjoint is F+.

Continuous everywhere defined linear operators are referred to as boun-
ded operators.

Linear relations were introduced in functional analysis by J. von Neu-

mann [17], motivated by the need to consider non-densely defined linear
differential operators which are considered by Coddington [3], Codding-

ton and Dijksma [4], among others. Problems in optimisation and control
also led to the study of set valued maps and differential inclusions (see, for
example, Aubin and Cellina [1], Clarke [2], among others). Studies
of convex processes, tangent cones,. . . , form part of the theory of con-
vex analysis developed to deal with non-smooth problems in viability and
control theory, for example.

Other recent works on multivalued mappings include the treatise on
partial differential relations by Gromov [11], the application of multival-
ued methods to solving differential equations by Favini and Yagi [7], and
the book “Multivalued Linear Operators” by Cross [5]. This book has
been essential to the development of this paper.

2. Perturbation theorems

Recall that a closed operator T is called upper semi-Fredholm if γ(T)>0,
R(T ) is closed and dimN(T ) < ∞; lower semi-Fredholm if γ(T ) > 0 and
R(T ) is a closed finite codimensional subspace and T is said to be semi-
Fredholm if it is upper or lower semi-Fredholm.

These concepts can be generalised naturally to multivalued linear op-
erators as follows

Definition 1. Let T ∈ LR(X,Y ) be closed. We say that T is upper
semi-Fredholm if T is open, has closed range and finite dimensional null
space; lower semi-Fredholm if it is open and its range is closed and finite
codimensional. If T is upper or lower semi-Fredholm we say that T is
semi-Fredholm.



182 T. Álvarez

The corresponding classes of linear relations will be abbreviated
USF (X,Y ), LSF (X,Y ) and SF (X,Y ) respectively.

We first show that in the context of closed linear relations between
Banach spaces the class of upper semi-Fredholm (respectively, lower semi-
Fredholm) relations coincides with the class of F+ (respectively, F−) rela-
tions.

Proposition 2. Let X and Y be complete and let T ∈ LR(X,Y ) be

closed. Then

(i) T is F+ if and only if T is upper semi-Fredholm.

(ii) T is F− if and only if T is lower semi-Fredholm.

Proof. Notice that if X and Y are Banach spaces and T ∈ LR(X,Y )
is closed, then we have the following properties:

(1) γ(T ) = γ(T ′), by [5, III. 5.3].

(2) T is open if and only if R(T ) is closed, by the Open Mapping Theorem
[5, III. 5.4]. Hence R(T ) is closed ⇔ R(T ′) is closed.

(3) T is F+ if and only if T has closed range and finite dimensional null
space, by [5, V. 1.7].

(i) The necessity is clear from (2) and (3), while the sufficiency
follows noting that if S ∈ LR(X,Y ) satisfies α(T ) < ∞ and
γ(S) > 0, then S ∈ F+ by [5, V. 5.1].

(ii) Applying the above properties (1), (2) and (3) combined with the
fact, α(T ′) = β(T ) (see [5, III. 1.4]), we have that T ∈ F− ⇔
T ′ ∈ F+ ⇔ T ′ has closed range and dim N(T ′) < ∞ ⇔ T is open
and R(T ) is a closed finite codimensional subspace ⇔ T is lower
semi-Fredholm. �

The following example due to Labuschagne [14, Ex. 21], shows that
the assumption of completeness cannot be omitted from Proposition 2.

Example 3. There exists a closed operator T ∈ F+ ∩ F− such that
T /∈ USF ∪ LSF .

Let X = Y = coo be the space of all scalar sequences with at most
finitely many non-zero coordinates normed by the norm ‖(αn)‖= sup{|αn| :
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n ∈ N} and define K as follows:

Kx = (−α1, α1, α2/2, . . . , αn/n, . . . ) for every x = (αn) ∈ coo.

Then, by an argument similar to that used in [9, III. 1.7] it may be
verified that K is a precompact operator but not compact. Thus I −K ∈
F+ ∩F− by [5, V. 3.2 and V. 5.12]. Moreover, Labuschagne [14, Ex. 21]
proves that I −K is injective, R(I −K) is closed and finite codimensional
in Y but γ(I − K) = 0. In consequence, I − K /∈ USF ∪ LSF .

We are interested in the following question: Let K,T ∈ LR(X,Y )
such that T is semi-Fredholm. Under that conditions do we have T + K is
semi-Fredholm with i(T ) = i(T + K)? It is well known (see, for example,
[9, V. 1.6, V. 2.1, V. 2.2]), that if T is a semi-Fredholm operator between
Banach spaces, then T + K has the same property and i(T ) = i(T + K)
whenever K is either bounded, strictly singular having strictly singular
adjoint or bounded with sufficiently small norm. Theorems 9, 10 and 18
contain both these perturbation properties in more general form.

We start proving some results that we shall need to obtain the main
theorems.

Lemma 4. Let M be a closed subspace of X, and let N ⊂ X be a

subspace such that M ⊂ N . Then N is closed in X if and only if N/M is

closed in X/M .

Proof. Follows immediately from the definitions. �

Lemma 5. Let T ∈ LR(X,Y ) be closed. Then

(i) QT T is a closed operator and T (0) and N(T ) are closed subspaces.

(ii) R(T ) is closed if and only if so is R(QT T ).

(iii) N(T ) = N(QT T ), γ(T ) = γ(QT T ), and β(T ) = β(QT T ).

(iv) R(T ′) = R((QT T )′), α(T ′) = β(T ) and α(T ) ≤ β(T ′) with equality

if T is open.

Proof. (i) According to [5, II. 5.3], T is closed if and only if QT T is
closed and T (0) is closed. Moreover, it is clear that T is closed if and only
if so is its inverse and hence N(T ) := T−1(0) is a closed subspace if T is a
closed linear relation.



184 T. Álvarez

(ii) Combine Lemma 4 with (i).

(iii) That N(T ) = N(QT T ) and γ(T ) = γ(QT T ) follows from [5,
II. 3.4] and (i), while the property β(T ) = β(QT T ) is a simple consequence
of the property T (0) closed and [5, I. 6.10].

(iv) The equality R(T ′) = R((QT T )′) holds trivially by [5, III. 1.10].
Finally, as N(T ′) = R(T )⊥ and N(T ) = R(T ′)� by [5, III. 1.4], we obtain
that α(T ′) = dim N(T ′) = dim R(T )⊥ = dim(Y/R(T )′ = dim Y/R(T ) =
β(T ) and α(T ) = dimN(T ) = dim N(T )′ = dim X ′/N(T )⊥ ≤ dim X ′/
R(T ′) = β(T ′). (Note that here N(T ) is closed since T is closed.) But
if T is open, then we have that N(T )⊥ = R(T ′) by [5, III. 4.6] and thus
α(T ) = β(T ′). �

Throughout this paper P (X) denotes the family of all closed finite
codimensional subspaces of X.

The next Proposition was proved in [20, 5. 1.8]. We include a proof
for the convenience of the reader.

Proposition 6. Let T ∈ LR(X,Y ) with finite dimensional null space.

Then the following properties are equivalent:

(i) T is open.

(ii) For every M ∈ P (D(T )), TM is closed in R(T ) and T |M is open.

(iii) There exists M ∈ P (D(T )) such that TM is closed in R(T ) and T |M
is open.

Proof. (i) =⇒ (ii) Let M ∈ P (D(T )). Then M + N(T ) is closed
since α(T ) < ∞. Now suppose Txk → Tx for (xk) ⊂ M . Since T is
open, we have d(x − xk, N(T )) → 0. Thus there exists (nk) ⊂ N(T ) such
that xk + nk → x. Since M + N(T ) is closed, x ∈ M + N(T ) and hence,
Tx ∈ T (M), that is, R(T |M ) is closed in R(T ).

Without loss of generality we may suppose M ∩ N(T ) = {0}. Then
if P is a continuous single valued projection defined on M + N(T ) with
null space N(T ), we have Pxk = P (xk + nk) → Px. Furthermore, TPx =
Tx since (I − P )x ∈ N(T ), and hence, (T |M )−1Txk = xk → x. Since
(Txk) ⊂ TM was arbitrary, it follows that T |M is open.

The implication (ii) =⇒ (iii) is obvious.
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(iii) =⇒ (i) Suppose that (iii) is true and α(T ) < ∞. Then N(T ) +
M ∈ P (D(T )) and hence there exists a finite dimensional subspace F of
D(T ) such that M+F+N(T ) = D(T ) and F∩(N(T )+M) = {0}. Further-
more, we have dim R(T )/TM ≤ dimD(T )/M < ∞. Thus, R(T ) = TM +
F2, where F2 is finite dimensional and (T |M+F )−1 is single valued with do-
main TM + F2. Now, we observe that ((T |M+F )−1)|F2 is continuous since
dim F2 < ∞, and ((T |M+F )−1)|TM = (T |M )−1 is continuous since T |M is
open. Thus, (T |M+F )−1 is continuous equivalently T |M+F is open. Hence
0 < γ(T |M+F ) = inf{‖Tx‖ / ‖x‖ : x ∈ M + F} ≤ inf{‖Tx‖ /d(x,N(T )) :
x ∈ M + F} = inf{‖Tx‖ /d(x,N(T )) : x ∈ D(T ) \ N(T )} = γ(T ). �

Let us recall some perturbation results for linear relations.

Proposition 7. Let T ∈ F+(X,Y ) and let S ∈ LR(X,Y ) be strictly

singular with S(0) ⊂ T (0) (for example, if S is a compact single valued

map). Then T + S ∈ F+(X,Y ).

Proof. See [5, V. 3.2]. �

Proposition 8. Let γ(T ) > 0 and let S satisfy S(0) ⊂ T (0), D(S) ⊃
D(T ) and ‖S‖ < γ(T ). Then we have.

(i) α(T + S) ≤ α(T ) and β(T + S) ≤ β(T ).

(ii) If T is injective, then T + S is open and β(T + S) ≤ β(T ).

Proof. See [5, III. 7.4, III. 7.6]. �

Our next Theorems 9 and 10 show that the property, upper semi-
Fredholm, is stable under compact perturbation.

Theorem 9. Let T ∈ USF (X,Y ). If K ∈ LR(X,Y ) is compact single

valued with D(T ) ⊂ D(K), then T+K ∈ USF (X,Y ) and i(T ) = i(T +K).

Proof. We first prove that T + K is closed. Assume that T is single
valued. Let (xn) be a sequence in D(T + K) = D(T ) ∩ D(K) = D(T )
(as D(T ) ⊂ D(K)) such that xn → x and (T + K)xn → y ∈ Y . Then
x ∈ D(T ) ⊂ D(K) and Kxn → Kx since K is continuous. Thus Txn →
Kx− y and, since T is closed, x ∈ D(T ) and Tx = Kx− y, that is, T + K

is closed. For the general case, if T is a closed linear relation then by
Lemma 5 so is the operator QT T . Hence, from what has been proved for
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the single valued case, QT+K(T + K) = QT T + QT K is closed and again
by Lemma 5 we deduce that T + K is closed, as desired.

Since α(T ) < ∞ and γ(T ) > 0 it follows from [5, V. 5.1] that T is F+

and so by [5, V. 1.6] there exists M ∈ P (D(T )) for which T |M is injective
and open. Now, the Proposition 6 assures that TM is closed in R(T ) and
also in Y since R(T ) is closed. As T ∈ F+ and K is strictly singular,
T + K ∈ F+ by Proposition 7.

Clearly K|M is precompact or equivalently inf{‖K|Z‖ : Z ∈P (M)}= 0
by [5, V. 2.2]. Thus, there exists N ∈ P (M) such that ‖K|N‖ < γ(T |M ).
But since the relations T |M and T |N(T |M )+N have the same null space,
we obtain that γ(T |M ) ≤ γ(T |N ). Again by Proposition 6, TN is in fact
closed and as T |N is injective and open, by virtue of Proposition 8 we
obtain that α((T + K)|N ) = 0, γ((T + K)|N ) > 0 and β((T + K)|N ) =
β(T |N ). If we can now show that (T + K)N is closed, T + K would be
open by Proposition 6. Since T |N (0) = (T + K)|N (0) we have trivially
that QT |N = Q(T+K)|N and QT |N K|N is a compact operator. Moreover,
from Lemma 5 it follows that N(T |N ) = N(QT |N T |N ) = N(QT |N (T +
K)|N ) = {0}, γ(T |N ) = γ(QT |N T |N ) > 0, γ((T + K)|N ) = γ(QT |N (T +
K)|N ) > 0. Hence, the operator QT |N (T + K)|N has a continuous inverse.
In consequence, if (T + K)nk → y for (nk) ⊂ N we have that (nk) is a
Cauchy sequence. By the compactness of QT |N K|N , (QT |N K|Nnk) has a
convergent subsequence assumed to be itself. Suppose QT |N K|Nnk → z.
Then QT |N T |Nnk → QT |N y − z. As T |NN and QT |N T |NN are closed,
it follows that there exists an element n in N for which QT |N y − z =
QT |N T |Nn. From the continuity of the operator (QT |N T |N )−1 we infer
that QT |N T |Nnk → QT |N T |Nn implies nk → n. Consequently QT |N y =
(QT |N y−z)+z ∈ QT |N (T +K)|NN . Thus QT |N (T +K)|NN is closed and
by Lemma 5, (T + K)|NN is closed, thereby establishing the openness of
T + K.

It only remains to verify that T + K has closed range and i(T ) =
i(T +K). For this, we note that it is easy to see that dimR(T +K)/R((T +
K)|N ) ≤ dim D(T )/N < ∞ and hence R(T + K) = (T + K)N + D where
D is finite dimensional and (T + K)N is closed. Therefore R(T + K) is
closed. In [5, V. 15.5], it is shown that if U, V ∈ LR(X,Y ) such that U is
an extension of V with dimD(U)/D(V ) = m < ∞, then i(U) = m + i(V )
if V has an index. Combining this property with i(T |N ) = i((T + K)|N )
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and dim D(T +K)/D((T +K)|N ) = dimD(T )/N := m < ∞ yields i(T ) =
m + i(T |N ) = m + i((T + K)|N ) = i(T + K), as required. �

We do not know if the same Theorem 9 is true in the case where
T ∈ LSF (X,Y ) with infinite dimensional null space.

Theorem 10. Let T ∈ USF (X,Y ) and let Y be complete. If K ∈
LR(X,Y ) is compact such that K(0) ⊂ T (0) and D(K) ⊃ D(T ), then

T + K ∈ USF (X,Y ) with i(T ) = i(T + K).

Proof. T + K is closed. Indeed, suppose that T and K are single
valued. Let (xn) be a sequence in D(T +K) = D(T ) such that xn → x and
(T+K)xn → y. Then ‖T (xn−xm)‖ ≤ ‖(T+K)(xn−xm)‖+‖K‖‖xn−xm‖.
Thus (Txn) is a Cauchy sequence in Y and, since Y is complete Txn → z

for some z ∈ Y . Since T is closed and K is continuous we obtain that
x ∈ D(T ) and (T + K)x = y, that is, T + K is closed. Turning to the
general case, it follows from by hypothesis and Lemma 5 that (T +K)(0) =
T (0) (so QT+K = QT ), QT T is a closed single valued and QT K is a
compact single valued. Applying the first part of the proof, we have that
QT+K(T + K) = QT T + QT K is closed and again by Lemma 5 it follows
that T + K is closed.

The rest of the proof is now somewhat similar to that of Theorem 9.
�

The next example illustrates that the condition, K(0) ⊂ T (0), is nec-
essary in Theorem 10.

Example 11. Let X be an infinite dimensional normed space and let
K ∈ LR(X) be defined by G(K) = X × X. Then K is compact, the
identity operator IX is clearly upper semi-Fredholm, while IX + K = K

is not upper semi-Fredholm.

The Example 3 shows that the property, semi-Fredholm in arbitrary
normed spaces, need not be preserved under strictly singular perturbations.

The completion T̃ of T ∈ LR(X,Y ) is also a linear relation between
Banach spaces and we obtain

Proposition 12. Let T ∈ SF (X,Y ). Then T̃ ∈ SF (X̃, Ỹ ) with

i(T ) = i(T̃ ).
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Proof. The result is a simple consequence of Lemma 5 combined with
the equivalences

T ∈ F+ ⇔ R(T̃ ) is closed and α(T̃ ) < ∞ [5; V. 7.6]; T ∈ F− ⇔ T̃ has
closed range and β(T̃ ) < ∞ [5, V. 5.2]. �

We note that the proof of Proposition 12 assures that the completion
of a closed T ∈ F+ ∪ F− is a semi-Fredholm linear relation. But, in this
case i(T ) and i(T̃ ) need not be equal, as we see from the next example.

Example 13. There exists a bounded operator T ∈ F+ ∩F− such that
i(T ) �= i(T̃ ).

Let C denote the Cesàro matrix. This is a lower triangular matrix
whose non-zero entries in the n-th row are equal to n−1, and it defines a
bounded operator Cp in lp for 1 < p < ∞. If 1/p + 1/q = 1 then by [19]
we have that the spectrum of Cp is given by

σ(Cp) = {λ ∈ C : |λ − q/2| ≤ q/2}. (∗)
Now, we denote Xn := (ln/n−1, ‖ . ‖2) for every n > 1, where ‖ . ‖2 is

the usual norm in l2. If we denote by C(n) the operator induced by C in
Xn, then C(n) is a bounded operator in Xn and (∗) tell us that, for n > 1,
we have σ(C(n)) = {λ ∈ C : |λ − n/2| ≤ n/2} and it is proved in [10] that
if |λ − n/2| < n/2 then λI − C(n) is injective with β(λI − C(n)) = 1.

In particular, we have that 3I −C(4) is injective, β(3I −C(4)) = 1 and
its completion 3I − C(2) is invertible. Combining this fact with Proposi-
tion 12 we obtain that 3I − C(4) is not semi-Fredholm, but 3I − C(4) ∈
F+ ∩ F− by [5, V. 5.2 and V. 7.6].

According to Harte [12] a bounded operator T is called almost upper
semi-Fredholm if T is open and dim N(T ) < ∞ and T is called almost
lower semi-Fredholm if T is almost open (that is, TBX ⊃ λBR(T ) for some
λ > 0) and β(T ) < ∞. These notions can be generalised naturally to
arbitrary linear relations.

Definition 14. Let T ∈ LR(X,Y ). We say that T is almost upper
semi-Fredholm if α(T ) < ∞ and γ(T ) > 0 and T is called almost lower
semi-Fredholm if it is almost open and β(T ) < ∞.

Here we characterise these classes in terms of the completions of the
linear relations.
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Recall that a linear relation T is said to be completely closable if T̃ x =
Tx for all x ∈ D(T ) [5, III. 4.1].

Proposition 15. Let T ∈ LR(X,Y ). Then

(i) If T is completely closable, then T is almost upper semi-Fredholm if

and only if T̃ has closed range, dim N(T̃ ) < ∞ and N(T ) = N(T̃ ).

(ii) T is almost lower semi-Fredholm if and only if T̃ has closed finite

codimensional range.

Proof. (i) It is enough to combine the following properties:

(a) γ(T ) ≤ γ(T̃ ) with equality holding if N(T ) is dense in N(T̃ )
[5, II. 5.9].

(b) N(T ) is dense in N(T̃ ) whenever γ(T ) > 0. Indeed, suppose that T is
open. Then, since 0 < γ(T ) ≤ γ(T̃ ) by (a), it follows from [5, III. 1.3,
III. 4.6] that N(T )⊥ = R(T ′) = R(T̃ ′) = N(T̃ )⊥ and so N(T ) = N(T̃ ).

(c) γ(T ) > 0 and α(T ) < ∞ =⇒ T ∈ F+ ([5, V. 5.1]) ⇔ T̃ has closed
range and finite dimensional null space ([5, V. 1.7]).

(ii) Follows immediately from the equivalences
T almost open ⇔ T ′ open ([5, III. 5.2]); T ∈ F− ⇔ γ(T ′) > 0 and

β(T ) < ∞ ⇔ T̃ has closed finite codimensional range ([5, V. 5.2]) �

The example 3 shows that the condition, N(T ) = N(T̃ ), in Proposi-
tion 15 is not superfluous.

Finally, we investigate the stability of semi-Fredholm relations under
small perturbation, as well as the behaviour of the index under pertur-
bation. The following example due to Mennicken and Sagraloff [15]
shows that the class of semi-Fredholm operators in arbitrary normed spaces
is not stable under small perturbation.

Example 16. Let T : coo → coo be the left-shift operator. Then T

is semi-Fredholm and for any 0 < |λ| < γ(T ), λI + T is not open and
i(T ) �= i(λI + T ).

Indeed, notice that α(T ) = γ(T ) = 1, β(T ) = 0 and perturbing T

by any λI with 0 < |λ| < 1, it follows that γ(λI + T ) = 0, α(λI + T ) =
β(λI + T ) = 0.
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Proposition 17. Let T ∈ F+ ∪ F− and suppose that K ∈ LR(X,Y )
satisfy D(K) ⊃ D(T ), K(0) ⊂ T (0) and ‖K‖ < γ(T̃ ). Then T + K ∈
F+ ∪ F− and i(T̃ ) = i(T̃ + K).

Proof. This result was proved by Wilcox [20, 6. 1.1]. The proof is
along the lines of the proof of the analogous result provided in [5, V. 15.6]
for the case when K is single valued. �

Theorem 18. Let X and Y be complete and T ∈ SF (X,Y ). Then for

any K ∈ LR(X,Y ) with K(0) ⊂ T (0), D(K) ⊃ D(T ) and ‖K‖ < 1/γ(T )
we have that T + K ∈ SF (X,Y ) and i(T ) = i(T + K).

Proof. It is enough to observe that T + K is closed (proceeding as
in Theorem 10) and apply Propositions 2 and 17. �

Acknowledgements. We thank the referee for several valuable com-
ments.

References

[1] J. P. Aubin and A. Cellina, Differential Inclusions, Springer-Verlag, New York,
1984.

[2] F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley-Interscience Publi-
cation, Wiley and Sons, Toronto, 1983.

[3] E. A. Coddington, Multivalued operators and boundary value problems, Lecture
Notes in Math., Vol. 183, Springer-Verlag, Berlin, 1971.

[4] E. A. Coddington and A. Dijksma, Selfadjoint subspaces and eigenfunction ex-
pansions for ordinary differential subspaces, J. Differential Equations 20 (2) (1976),
473–526.

[5] R. W. Cross, Multivalued Linear Operators, Marcel Dekker, New York, 1998.

[6] D. Van Dults, Perturbation theory and strictly singular operators in locally convex
spaces, Studia Math. 38 (1970), 341–372.

[7] A. Favini and A. Yagi, Multivalued linear operators and degenerate evolution
equations, Ann. Mat., Pura. Appl. (4) 163 (1993), 353–384.

[8] C. Foias, Invariant para-Closed Subspaces, Indiana Univ. Math. J. 21 (1972),
887–906.

[9] S. Goldberg, Unbounded Linear Operators, McGraw-Hill, New York, 1966.

[10] M. Gonzalez, The fine spectrum of the Cesàro operator in lp (1 < p < ∞), Archiv
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(1960), 162–174.

[19] B. E. Rhoades, Generalized Hausdorff matrices bounded on lp and c, Acta Sci.
Math. 43 (1981), 333–345.

[20] D. Wilcox, Multivalued Semi-Fredholm Operators in Normed Linear Spaces,
Ph.D. Thesis, Univ. Cape Town, 2001.

TERESA ÁLVAREZ
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