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On the diophantine equation x2 + (p1
z1 . . . ps

zs)2 = 2yn

By ISTVÁN PINK (Debrecen)

Abstract. We give an explicit upper bound for the exponent n in the title
equation which depends only on max pi and s.

1. Introduction

There are many special results concerning equations of the form

Ax2 + pz1
1 . . . pzs

s = Byn,

where A, B are positive integers, p1, . . . , ps are distinct primes and x, y, z1,
. . . , zs are unknown non-negative integers, see e.g. [1]–[7], [9], [10], [12]–[18]
and the references given there. For fixed a, Pink and Tengely [19] dealt
with the equation

x2 + a2 = 2yn (1)

in x, y ∈ N and n ≥ 3 with gcd(x, y) = 1, and gave an explicit upper bound
for the exponent n depending only on a. In the case when n is a prime,
this bound has been recently improved by Tengely [21]. The purpose of
this paper is to generalize these results of [19] and [21] to the case when
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a = p1
z1 . . . ps

zs , where p1, . . . , ps are given primes and z1, . . . , zs are also
unknown non-negative integers.

2. New results

Let p1, . . . , ps be distinct primes. As a generalization of (1), consider
the equation

x2 + (p1
z1 . . . ps

zs)2 = 2yn (2)

in x, y ∈ N, n ≥ 3 and z1, . . . , zs ∈ Z≥0, where gcd(x, y) = 1. It is clear
that x = y = 1, z1 = · · · = zs = 0 is always a solution which will be called
trivial. Put P = max{p1, . . . , ps}. It follows from Theorem 2 of [20] that
apart from the trivial solution, in (2) n ≤ C(P, s) holds with an effectively
computable constant C depending only on P and s. We make this constant
C explicit, and prove the following generalization of Theorem 1 of [19] and
Theorem 1 of [21].

Theorem. For every non-trivial solution of (2) with n odd, we have

n ≤ 90813 if (P, s) = (3, 1),

and

n < 5371sP (P + 1) log P

otherwise.

3. Auxiliary results

We use h(α) for the absolute logarithmic height of the algebraic num-
ber α. Recall that if a0(X − α1) · · · (X − αD) is the minimal defining
polynomial of α = α1 over Z, then h(α) is defined by

h(α) =
1
D

log

(
|a0|

D∏
i=1

max(|αi|, 1)
)

.

Similarly as in the papers [9] and [10], we shall combine in our proof
the best known estimates for linear forms in two logarithms in the complex
and in the p-adic case.
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Lemma 1. Let α be a complex algebraic number with |α| = 1, but

not a root of unity, and log α the principal value of the logarithm (that is,

−π < Im log α ≤ π). Consider the linear form

Λ = b1iπ − b2 log α

with positive integers coefficients b1 and b2. Let λ be a real number with

1.8 ≤ λ < 4, and put

D = [Q(α) : Q]/2,

ρ = eλ, K = 0.5ρπ + Dh(α), B = max(13, b1, b2),

t =
1

6πρ
− 1

48πρ(1 + 2πρ/3λ)
, k =

(
1/3 +

√
1/9 + 2λt

λ

)2

,

H = max
{

3λ,D

(
log B + log

(
1
πρ

+
1

2K

)
− log

√
k + 0.886

)

+
3λ
2

+
1
k

(
1

6πρ
+

1
3K

)
+ 0.023

}
.

Then

log |Λ| > −(8πkρλ−1H2 + 0.23)K − 2H − 2 log H

+ 0.5λ + 2 log λ − (D + 2) log 2.

Proof. This is Theorem A.1.3 of [8]; its proof is due to Mignotte.
�

For any prime p, let Qp be an algebraic closure of the field Qp of p-
adic numbers. We denote by vp the unique extension to Qp of the standard
p-adic valuation over Qp, normalized by vp(p) = 1.

Lemma 2. Let p be a prime number. Let α1 and α2 be two algebraic

numbers which are p-adic units. Denote by f the residual degree of the

extension Qp ↪→ Qp(α1, α2) and put D = [Q(α1, α2) : Q]/f . Let b1 and b2

be two positive integers and put

Λ = α1
b1 − α2

b2 .
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Denote by A1 > 1 and A2 > 1 two real numbers such that

log Ai ≥ max{h(αi), log p/D}, i = 1, 2

and put

b′ =
b1

D log A2
+

b2

D log A1
.

If α1 and α2 are multiplicatively independent, then we have

vp(Λ) ≤ 24p(pf − 1)
(p − 1)(log p)4

D4

(
max

{
log b′ + log log p + 0.4,

10 log p

D
, 5
})2

× log A1 log A2.

Proof. This is Théorème 4 of Bugeaud and Laurent [11] with the
choice (µ, ν) = (10, 5). �

4. Proof of the theorem

Proof. Without loss of generality we may assume that
min{p1, . . . , ps}≥ 3. Otherwise, if pi =2 and zi ≥ 1 for some i∈{1, 2, . . . , s},
then by (2) x must be even. Now, since y is odd, the right-hand side of (2)
is congruent to 2 mod 4 and the left-hand side is congruent to 0 mod 4, so
we get a contradiction.

Put a = p1
z1 . . . ps

zs . Since Z[i] is a unique factorization domain,
equation (2) leads to

x + ai = ir(1 + i)(u + iv)n, x − ai = (−i)r(1 − i)(u − iv)n,

y = u2 + v2,
(3)

where r ∈ {0, 1, 2, 3} and u, v ∈ Z. This implies that here uv = 0 and
u = ±v cannot hold. In the opposite case y = u2, v2 or 2u2, whence
un | 2ai or vn | 2ai would follow in Z[i]. This would yield x = y = 1, which
leads to the trivial solution. Consequently, y = u2 + v2 implies that y ≥ 5.

First suppose that
a ≤ y

n
3.128 . (4)
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Using (4) we get that∣∣∣∣x + ai

x − ai
− 1
∣∣∣∣ =

2a√
2yn/2

<
√

2y−
n

5.547 . (5)

and, by (3),∣∣∣∣x + ai

x − ai
− 1
∣∣∣∣ =

∣∣∣∣(−1)ri
(

u + iv

u − iv

)n

− 1
∣∣∣∣ =

∣∣∣∣
(±(v − iu)

u − iv

)n

− 1
∣∣∣∣ (6)

follows, where we used that for n odd i or −i is an n-th power.
It is easy to see that x+ai

x−ai can be a root of unity only if x = y = 1.

Hence ±(v−iu)
u−iv is not a root of unity. But (5) and y ≥ 5 imply that for

n ≥ 6,
∣∣∣x+ai
x−ai − 1

∣∣∣ ≤ 1
3 . Since for every z ∈ C with |z − 1| ≤ 1

3 we have

|z − 1| ≥ 1
2 | log z|, we deduce from (5) and (6) that

√
2y−

n
5.547 >

1
2

∣∣∣∣2mπi + n log
(±(v − iu)

u − iv

)∣∣∣∣ , (7)

where m is an integer with |2m| ≤ n and log denotes the principal value

of the logarithm. Now we apply Lemma 1. Choose α =
(±(v−iu)

u−iv

)−1
,

b1 = 2m, b2 = n, if m ≥ 0, and α = ±(v−iu)
u−iv , b1 = 2m, b2 = n, if m < 0.

It is clear that |α| = 1. Further, it is easy to check that h(α) = 1
2 log y.

Putting λ = 1.8 and D = 1, and using the notation of Lemma 1, for
n ≥ 230 we get K < 9.503 + 1

2 log y and

H < log n + 2.512. (8)

Setting Λ = 2miπ − n log α we obtain that

log |Λ| > − (13.1576H2 + 0.23) ·
(

9.503 +
1
2

log y

)
− 2(H + log H) − 0.003.

(9)

Comparing (7) with (9) and using y ≥ 5, we deduce that

n < 5.547(84.27H2 + 1.243(H + log H) + 2.121),

whence in view of (8), we infer that

n ≤ 90813. (10)



210 István Pink

Next consider the case when

a > y
n

3.128 . (11)

It follows from (3) that

2ai = ir(1 + i)(u + iv)n − (−i)r(1 − i)(u − iv)n, (12)

whence
2ai

(−i)r(u − iv)n
=
(±(u + iv)

(u − iv)

)n

(1 + i) − (1 − i). (13)

Since

(1 + i)n =

{
±2

n−1
2 (1 + i), if n ≡ 1 mod 4

±2
n−1

2 (1 − i), if n ≡ −1 mod 4,

we obtain from (13) that

±2
n+1

2 (−1)ri1−r(u + iv)n
a

yn
=
(±(u + iv)

(u − iv)
(1 ± i)

)n

− (1 ∓ i)n. (14)

Put Λ =
(±(u+iv)

(u−iv) (1± i)
)n − (1∓ i)n. If p | a then in view of gcd(x, y) = 1,

we get p � xy. It follows from (14) that

vp(a) = vp

(
±2

n+1
2 (−1)ri1−r(u + iv)n

a

yn

)
= vp(Λ), (15)

since p is relatively prime to 2i and u + iv in Z[i].
Assume first that

(±(u+iv)
(u−iv) (1 ± i)

)
and (1 ∓ i) are multiplicatively

dependent. Then there exists (r, s) ∈ Z2 with (r, s) �= (0, 0) such that(±(u + iv)
(u − iv)

(1 ± i)
)r

(1 ∓ i)s = 1. (16)

Setting α = u + iv, (16) yields(α

ᾱ
(1 ± i)

)4r
(1 ∓ i)4s = 1. (17)

Taking norms on both sides of (17), we infer that

24(r+s) = 1,
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which yields r + s = 0. Thus, by (17),

(α/ᾱ)4r = 1

whence
ᾱ/α = ±1 or ᾱ/α = ±i. (18)

From (18) we deduce that uv = 0 or u = ±v. But as was seen above, this
leads to the trivial solution.

Consider now the case when
(±(u+iv)

(u−iv) (1±i)
)

and (1∓i) are multiplica-
tively independent. We apply Lemma 2 to Λ with the following choice of
parameters:

α1 =
(±(u + iv)

(u − iv)
(1 ± i)

)
, α2 = 1 ∓ i,

b1 = b2 = n, f = 2, D = 1.

Since p ≥ 3 and y ≥ 5, we may choose log A1 = log 10
2 log 5 log y log p, log A2 =

log p, b′ = 2+log 10
log 10

n
log p . Then we get

vp(a) = vp(Λ)

< 17.17
p(p + 1)
log2 p

(max {log(1.869n) + 0.4, 10 log p})2 log y.
(19)

It follows that

log a =
∑
p|a

vp(a) log p

< 17.17
∑
p|a

p(p + 1)
log p

(max {log(1.869n) + 0.4, 10 log p})2 log y.
(20)

Comparing (11) with (20) we get

n < 17.17 · 3.128
∑
p|a

p(p + 1)
log p

(max {log(1.869n) + 0.4, 10 log p})2 . (21)

Thus we deduce that if

max {log(1.869n) + 0.4, 10 log p} = log(1.869n) + 0.4,
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then
n

(log(1.869n) + 0.4)2
< 3.128 · 17.17sP (P + 1)

log P
. (22)

If
max {log(1.869n) + 0.4, 10 log p} = 10 log p,

then (21) gives
n < 5371sP (P + 1) log P. (23)

Finally, except for the case P = 3, s = 1, we obtain from (10), (22) and
(23) that

n < 5371sP (P + 1) log P

while if P = 3 and s = 1, we deduce that (10) holds. �
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[10] Y. Bugeaud and K. Győry, On binomial Thue–Mahler equations (to appear).

[11] Y. Bugeaud and M. Laurent, Minoration effective de la distance p-adique entre
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