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Hermite–Hadamard-type inequalities for generalized
3-convex functions

By MIHÁLY BESSENYEI (Debrecen)

Abstract. The aim of this paper is to present Hermite–Hadamard type in-
equalities for generalized 3-convex functions. A particular result for generalized
4-convex functions is also obtained.

1. Introduction

In 1937, E. F. Beckenbach ([Bec37]; see also [BB45]) introduced a
notion which subsumes most of the convexity notions of higher-order:

Definition 1. Let I ⊂ R be a real interval and denote by C(I) the
set of all real valued functions defined on I. We say that Ωn(I) ⊂ C(I)
is an n-parameter Beckenbach family on I if, for any system of points
(x1, y1), . . . , (xn, yn) ∈ I ×R with pairwise distinct first coordinates, there
exists a unique element ω ∈ Ωn such that ω(xk) = yk for all k = 1, . . . , n.

A function ω0 : I → R is called generalized n-convex with respect to
Ωn(I) if it intersects the elements of Ωn(I) alternately in a certain sense.
More precisely, we have the following
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Definition 2. Let Ωn(I) be an n-parameter Beckenbach family. A func-
tion ω0 : I → R is said to be generalized n-convex (nth-order convex) with
respect to Ωn(I) (in the sense of Beckenbach) if, for all x1 < · · · < xn in I,
the function ω ∈ Ωn(I) determined uniquely by the condition

ω0(xk) = ω(xk) (k = 1, . . . , n)

satisfies the inequalities

(−1)n(ω0(y) − ω(y)) ≥ 0 (y ≤ x1)

(−1)n+k(ω0(y) − ω(y)) ≥ 0 (xk ≤ y ≤ xk+1, k = 1, . . . , n − 1)

(ω0(y) − ω(y)) ≥ 0 (xn ≤ y).

Throughout in this paper, we restrict our investigations to Becken-
bach families generated by the linear span of certain continuous func-
tions ω1, . . . , ωn : I → R. As it can be easily checked, the linear span
L(ω1, . . . , ωn) is an n-parameter Beckenbach family if and only if
(ω1, . . . , ωn) is a Tchebychev system, i.e., ω1, . . . , ωn : I → R are continuous
functions and ∣∣∣∣∣∣∣

ω1(x1) · · · ω1(xn)
...

. . .
...

ωn(x1) · · · ωn(xn)

∣∣∣∣∣∣∣
�= 0

is valid whenever x1, . . . , xn are pairwise distinct elements of I. We say that
ω0 : I → R is generalized n-convex with respect to the Tchebychev system
(ω1, . . . , ωn) if ω0 is generalized n-convex with respect to the Beckenbach
family Ωn(I) = L(ω1, . . . , ωn). For the properties of Tchebychev systems
and their applications see [KS66] and [Kar68].

In the particular case when the Tchebychev system is generated by
the affine functions, the generalized convexity so obtained coincides with
the ordinary convexity. For a convex function (in the traditional sense)
ω0 : I → R we have the Hermite–Hadamard inequality ([Had93], [ML85],
[NP04])

ω0

(
a + b

2

)
≤ 1

b − a

b∫
a

ω0(x)dx ≤ ω0(a) + ω0(b)
2

(a, b ∈ I).
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This inequality provides a lower and an upper estimate for the integral
average of ω0 using certain base points of the domain. For generalized con-
vex functions with respect to arbitrary dimensional Tchebychev systems
with polynomial basis, or with respect to 2 dimensional Tchebychev sys-
tems with arbitrary basis, analogous inequalities hold (cf. [BP02], [BP03]).
The aim of this paper is to present Hermite–Hadamard type inequalities
for generalized convex functions with respect to 3 dimensional Tcheby-
chev systems with arbitrary basis. A particular result for 4 dimensional
Tchebychev systems is also obtained.

2. Preliminary results

First we list up some known results for generalized higher-order convex
functions. One of the most important states continuity and integrability
properties for them (cf. [BP04]).

Theorem A. Let (ω1, . . . , ωn) be a Tchebychev system on the inter-

val I. If ω0 : I → R is a generalized n-convex function with respect to this

system and n ≥ 2, then ω0 is continuous on the interior of I. Furthermore,

if [a, b] ⊂ I, then ω0 is bounded on [a, b].

The subsequent theorems present Hermite–Hadamard type inequali-
ties for generalized higher-order convex functions. Two cases are consid-
ered: the odd- and the even-order one. The left and the right hand side
inequalities are investigated independently in both cases.

Theorem B. Let ωωω = (ω1, . . . , ω2n+1) be a Tchebychev system on

the interval [a, b] and ρ : [a, b] → R be a positive integrable function. If a

system of points ξ1 < · · · < ξn in ]a, b[ satisfies the inclusion

∫ b

a
ωωωρ ∈ L

(
ωωω(a),ωωω(ξ1), . . . ,ωωω(ξn)

)
, (1)

then there exists uniquely determined positive constants α0, . . . , αn such

that ∫ b

a
ωωωρ = α0ωωω(a) +

n∑
i=1

αiωωω(ξi).
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Furthermore, if ω0 : [a, b] → R is a generalized (2n + 1)-convex function

with respect to ωωω, then the following inequality holds

∫ b

a
ω0ρ ≥ α0ω0(a) +

n∑
i=1

αiω0(ξi).

Theorem C. Let ωωω = (ω1, . . . , ω2n+1) be a Tchebychev system on

the interval [a, b] and ρ : [a, b] → R be a positive integrable function. If a

system of points η1 < · · · < ηn in ]a, b[ satisfies the inclusion

∫ b

a
ωωωρ ∈ L

(
ωωω(η1), . . . ,ωωω(ηn),ωωω(b)

)
, (2)

then there exist uniquely determined positive constants β1, . . . , βn+1 such

that ∫ b

a
ωωωρ =

n∑
i=1

βiωωω(ηi) + βn+1ωωω(b).

Furthermore, if ω0 : [a, b] → R is a generalized (2n + 1)-convex function

with respect to ωωω, then the following inequality holds

∫ b

a
ω0ρ ≤

n∑
i=1

βiω0(ηi) + βn+1ω0(b).

In the even-order case analogous results can be verified: the corre-
spondence of the inclusion (1) contains only interior base points, while
the correspondence of the inclusion (2) contains some other interior base
points plus both endpoints.

In fact, Theorem B, Theorem C and their even-order analogue give suf-
ficient conditions for the existence of Hermite–Hadamard type inequalities.
The existence of ξk and ηk in the inclusions of these theorems are guaran-
teed for polynomially higher-order convexity and generalized 2-convexity.
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3. The main result

First we formulate the left hand side Hermite–Hadamard inequality
for generalized 3-convex functions.

Theorem 1. Let ωωω = (ω1, ω2, ω3) be a Tchebychev system on [a, b],
and ρ : [a, b] → R be a positive integrable function. Then,

(1) there exists a unique element ξ of ]a, b[ which fulfills the inclusion
∫ b

a
ωωωρ ∈ L (ωωω(a),ωωω(ξ)) ;

(2) there exist uniquely determined positive constants c1, c2 such that
∫ b

a
ωωωρ = c1ωωω(a) + c2ωωω(ξ);

(3) if ω0 : [a, b] → R is generalized 3-convex with respect to ωωω, then the

following inequality holds∫ b

a
ω0ρ ≥ c1ω0(a) + c2ω0(ξ).

Proof. Due to Theorem B, we suffice to prove only the first assertion
of the theorem. Define the function F : [a, b] → R by the formula

F (x) :=
∣∣∣ ωωω(a)

∫ x
a ωωωρ

∫ b
a ωωωρ

∣∣∣ :=

∣∣∣∣∣∣∣∣∣

ω1(a)
∫ x
a ω1ρ

∫ b
a ω1ρ

ω2(a)
∫ x
a ω2ρ

∫ b
a ω2ρ

ω3(a)
∫ x
a ω3ρ

∫ b
a ω3ρ

∣∣∣∣∣∣∣∣∣
.

Then, F is continuous on [a, b] and F (a) = F (b) = 0. Further on, due to
the Tchebychev property of ωωω and the positivity of ρ, F (x) �= 0 if x ∈]a, b[.
For simplicity, we may assume that F is positive on ]a, b[. According to
Weierstrass’ theorem, there exists a ξ such that

F (ξ) = max
[a,b]

F.

Clearly, ξ ∈]a, b[. Then, for x ∈]ξ, b], we have the inequality

0 ≥ F (x) − F (ξ)∫ x
ξ ρ

=

∣∣∣∣∣ ωωω(a)

∫ x
ξ ωωωρ∫ x
ξ ρ

∫ b
a ωωωρ

∣∣∣∣∣ . (3)
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On the other hand, for k = 1, 2, 3 the following estimates hold

min
[ξ,x]

ωk ≤
min[ξ,x] ωk

∫ x
ξ ρ∫ x

ξ ρ
≤

∫ x
ξ ωkρ∫ x

ξ ρ
≤

max[ξ,x] ωk

∫ x
ξ ρ∫ x

ξ ρ
≤ max

[ξ,x]
ωk.

Therefore, tending to ξ from the right in formula (3), the central column
of the determinant tends to ωωω(ξ), and

∣∣∣ ωωω(a) ωωω(ξ)
∫ b
a ωωωρ

∣∣∣ ≤ 0

follows. Choosing x ∈ [a, ξ[ and applying the same argument, we get the
opposite inequality and arrive at

∣∣∣ ωωω(a) ωωω(ξ)
∫ b
a ωωωρ

∣∣∣ = 0.

Thus, the linear independence of ωωω(a) and ωωω(ξ) yields that∫ b
a ωωωρ ∈ L(ωωω(a),ωωω(ξ)).

For the uniqueness, assume indirectly that the inclusions

∫ b

a
ωωωρ ∈ L (ωωω(a),ωωω(ξ))

∫ b

a
ωωωρ ∈ L

(
ωωω(a),ωωω(ξ̄)

)

hold with some ξ �= ξ̄ from ]a, b[ . Taking into consideration (2) and after
rearranging, the identity

0 = (c1 − c̄1)ωωω(a) + c2ωωω(ξ) − c̄2ωωω(ξ̄)

follows. Obviously, the coefficients c1 − c̄1, c2, c̄2 cannot be equal to zero
simultaneously, therefore

∣∣ ωωω(a) ωωω(ξ) ωωω(ξ̄)
∣∣ = 0

which contradicts the Tchebychev property of ωωω. �

For the right hand side inequality analogous result remains true which
can be verified with a similar argument, therefore the proof is omitted.
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Theorem 2. Let ωωω = (ω1, ω2, ω3) be a Tchebychev system on [a, b],
and ρ : [a, b] → R be a positive integrable function. Then,

(1) there exists a unique element η of ]a, b[ which fulfills the inclusion

∫ b

a
ωωωρ ∈ L (ωωω(η),ωωω(b)) ;

(2) there exist uniquely determined positive constants d1, d2 such that

∫ b

a
ωωωρ = d1ωωω(η) + d2ωωω(b);

(3) if ω0 : [a, b] → R is generalized 3-convex with respect to ωωω, then the

following inequality holds

∫ b

a
ω0ρ ≤ d1ω0(η) + d2ω0(b).

Keeping the notations of Theorem 1 and Theorem 2, the coefficients
c1, c2 and d1, d2 depend linearly on ωk(a), ωk(ξ) and ωk(η), ωk(b), respec-
tively. Therefore, in concrete cases, the main difficulty is to determine the
points ξ and η. Not claiming completeness, we list some examples when
they can be determined explicitly.

Example 1. If the Tchebychev system (ω1, ω2, ω3) is defined on [a, b]
by ω1(x) = 1, ω2(x) = sinhx, ω3(x) = cosh x and ρ ≡ 1, then

ξ = 2artanh
(

sinh b − sinha − (b − a) cosh a

cosh b − cosh a − (b − a) sinh a

)
− a

η = 2artanh
(

sinh b − sinha − (b − a) cosh b

cosh b − cosh a − (b − a) sinh b

)
− b.

Example 2. If the Tchebychev system (ω1, ω2, ω3) is defined on [a, b] ⊂
] − π, π[ by ω1(x) = 1, ω2(x) = sinx, ω3(x) = cos x and ρ ≡ 1, then

ξ = 2arctan
(

sin a − sin b + (b − a) cos a

cos a − cos b − (b − a) sin a

)
− a

η = 2arctan
(

sin a − sin b + (b − a) cos b

cos a − cos b − (b − a) sin b

)
− b.
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Example 3. If the Tchebychev system (ω1, ω2, ω3) is defined on [a, b]
by ω1(x) = 1, ω2(x) = exp x, ω3(x) = exp 2x and ρ ≡ 1, then

ξ = log
(

exp 2b − exp 2a − 2(b − a) exp 2a
2(exp b − exp a − (b − a) exp a)

− exp a

)

η = log
(

exp 2b − exp 2a − 2(b − a) exp 2b
2(exp b − exp a − (b − a) exp b)

− exp b

)
.

Example 4. If, for p > 0, the Tchebychev system (ω1, ω2, ω3) is defined
on [a, b] ⊂ [0,+∞[ by ω1(x) = 1, ω2(x) = xp, ω3(x) = x2p and ρ ≡ 1, then

ξ =
(

p + 1
2p + 1

· b2p+1 − a2p+1 − (2p + 1)(b − a)a2p

bp+1 − ap+1 − (p + 1)(b − a)ap
− ap

)1/p

η =
(

p + 1
2p + 1

· b2p+1 − a2p+1 − (2p + 1)(b − a)b2p

bp+1 − ap+1 − (p + 1)(b − a)bp
− bp

)1/p

.

The particular case p = 1 of the last example gives a corollary of
[BP02] for so called 3-monotone functions. For 3 dimensional Tchebychev
systems generated by arbitrary power functions, the interior base points
in general, cannot be expressed explicitly.

The proof of Theorem 1 is applicable for generalized 2-convexity, and
gives a different approach that was followed in [BP03]. Observe, that the
“uniqueness” part of the proof can be generalized for arbitrary Tchebychev
systems: if inclusion (1) (analogously, (2), or their equivalence in the even-
order case) is satisfied, then it is satisfied uniquely. Using the key idea of
the “existence” part, we can state right hand side Hermite–Hadamard type
inequality for generalized 4-convex functions.

Theorem 3. Let ωωω = (ω1, ω2, ω3, ω4) be a Tchebychev system on

[a, b], and ρ : [a, b] → R be a positive integrable function.

(1) There exists a unique element ξ of ]a, b[ which fulfills the inclusion
∫ b

a
ωωωρ ∈ L (ωωω(a),ωωω(ξ),ωωω(b)) ;

(2) there exist uniquely determined positive constants c1, c2, c3 such that
∫ b

a
ωωωρ = c1ωωω(a) + c2ωωω(ξ) + c3ωωω(b);
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(3) if ω0 : [a, b] → R is generalized 4-convex with respect to ωωω, then the

following inequality holds

∫ b

a
ω0ρ ≤ c1ω0(a) + c2ω0(ξ) + c3ω0(b).

Hint. Apply the same argument as in the proof of Theorem 1 for the
function F : [a, b] → R defined by the formula

F (x) :=
∣∣∣ ωωω(a)

∫ x
a ωωωρ ωωω(b)

∫ b
a ωωωρ

∣∣∣

:=

∣∣∣∣∣∣∣∣∣∣∣∣

ω1(a)
∫ x
a ω1ρ ω1(b)

∫ b
a ω1ρ

ω2(a)
∫ x
a ω2ρ ω2(b)

∫ b
a ω2ρ

ω3(a)
∫ x
a ω3ρ ω3(b)

∫ b
a ω3ρ

ω4(a)
∫ x
a ω4ρ ω4(b)

∫ b
a ω4ρ

∣∣∣∣∣∣∣∣∣∣∣∣
. �

Unfortunately, the method fails if someone tries to use it for stating
left hand side Hermite–Hadamard type inequality for generalized 4-convex
function, because, according to a result of [BP04], the existence of two
interior base points should be guaranteed. Due to similar reasons, the
“existence” part in the proof of Theorem 1 cannot be applied for general-
ized n-convex functions if n > 4.
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[BP02] M. Bessenyei and Zs. Páles, Higher-order generalizations of Hadamard’s
inequality, Publ. Math. Debrecen 61, no. 3–4 (2002), 623–643.
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