Transformations on the set of all n-dimensional subspaces of a Hilbert space preserving orthogonality

By MÁTÉ GYŐRY (Debrecen)

To the memory of Professor B. Brindza

Abstract

In our paper we generalize Uhlhorn's version of Wigner's famous unitary-antiunitary theorem by describing the transformations preserving the orthogonality between higher dimensional subspaces under certain conditions.

1. Introduction and Statement of the Results

Wigner's classical unitary-antiunitary theorem has several formulations. One of them describes the bijections on the set of all 1-dimensional subspaces of a Hilbert space which preserve the angles between those subspaces. This fundamental result has been extended in (at least) three directions:

- if the underlying Hilbert space is at least three-dimensional, then, keeping the condition of bijectivity, the assumption of preserving angles can be replaced by the rather mild condition of preserving orthogonality in both directions; this is called UhLhorn's version of Wigner's theorem (cf. [9]),

[^0]- keeping the condition of preserving angles, the assumption of bijectivity can be omitted (in this case the transformation is induced by a linear or conjugate linear isometry instead of a unitary or antiunitary operator; see [1], [8]),
- Molnár [7] extended Wigner's result to higher dimensional subspaces, namely he obtained the following result. If n is a positive integer, H is a Hilbert space with dimension not less than n and $n=1$ or $\operatorname{dim} H \neq$ $2 n$ then any transformation ϕ on the set of all n-dimensional subspaces of H, which preserves the so-called principal angles (see the definition below) between those subspaces, is of the form $\phi(M)=V[M]$, where V is a linear or conjugate linear isometry on H. Moreover, if H is an infinite dimensional Hilbert space, then a surjective transformation ϕ on the set of all infinite dimensional subspaces of H, which preserves the principal angles between those subspaces, is of the form $\phi(M)=U[M]$, where U is a unitary operator or antiunitary operator on H.
For further generalizations see e.g. [3]-[6]. In this paper we extend Wigner's theorem simultaneously in all the three directions above.

We introduce some concepts and notation. Let H be a (real or complex) Hilbert space and for any $n \in \mathbb{N} \cup\{\infty\}$ set

$$
\begin{aligned}
H_{n} & =\{M \subseteq H \mid \operatorname{dim} M=n, \operatorname{codim} M \geq n, M \text { is a closed subspace }\}, \\
H_{(n)} & =\{M \subseteq H \mid \operatorname{dim} M \geq n, \operatorname{codim} M \geq n, M \text { is a closed subspace }\} .
\end{aligned}
$$

We say that a transformation $\phi: H_{n} \rightarrow H_{n}$ preserves orthogonality in both directions, if for any $M, N \in H_{n}$ we have

$$
M \perp N \Leftrightarrow \phi(M) \perp \phi(N) .
$$

For any closed subspace $M \subseteq H$, let P_{M} denote the orthogonal projection to M. Following Molnár [7] we say that ϕ preserves principal angles if for any $K, L \in H_{n}$ the positive operators $P_{K} P_{L} P_{K}$ and $P_{\phi(K)} P_{\phi(L)} P_{\phi(K)}$ are unitarily equivalent. It is clear that if ϕ preserves principal angles then it also preserves orthogonality in both directions.

We now present our results. In the Theorem below we characterize the transformations ϕ on H_{n} which preserve orthogonality in both directions
under certain natural conditions. Our basic idea is to show that ϕ is induced by a transformation acting on the 1-dimensional subspaces of H, and then we apply Uhlhorn's result [9].

To formulate the Theorem, we remark that if $\operatorname{dim} H<2 n$ then there do not exist two orthogonal n-dimensional subspaces of H, thus in this case the condition of preserving orthogonality has no meaning. In the Proposition we show that the case in which $\operatorname{dim} H=2 n \in \mathbb{N}$ is singular in a certain sense. Further, if $n=\infty$ then subspaces of finite codimension are clearly not orthogonal to any infinite dimensional subspace, and so the property of preserving orthogonality cannot imply anything for them. Therefore, in the case when $n=\infty$, we consider subspaces of infinite dimension and infinite codimension. In the case $2 n<\operatorname{dim} H \leq 3 n$ the proof of Step 5 would be much longer, hence we omit that case. These justify the assumption (1) below.

Theorem. Let H be a Hilbert space and $n \in \mathbb{N} \cup\{\infty\}$ with

$$
\begin{cases}\operatorname{dim} H>3 n & \text { if } n \in \mathbb{N} \tag{1}\\ \operatorname{dim} H=\infty & \text { if } n=\infty\end{cases}
$$

and let $\phi: H_{n} \rightarrow H_{n}$.
If $\phi: H_{n} \rightarrow H_{n}$ is surjective, then ϕ preserves orthogonality in both directions if and only if there exists a unique bijection $\psi: H_{1} \rightarrow H_{1}$ which preserves orthogonality in both directions, and for any $K \in H_{n}$ we have

$$
\begin{equation*}
\phi(K)=\operatorname{span}\left\{\psi(X) \mid X \in H_{1}, X \subseteq K\right\}, \tag{2}
\end{equation*}
$$

where span denotes the generated linear subspace.
Thus, by Uhlhorn's theorem, if $n \in \mathbb{N} \cup\{\infty\}$ is such that (1) holds and $\phi: H_{n} \rightarrow H_{n}$ is surjective, then ϕ preserves orthogonality in both directions if and only if there exists a unitary or antiunitary operator U on H such that for any $K \in H_{n}$ we have

$$
\begin{equation*}
\phi(K)=U[K] . \tag{3}
\end{equation*}
$$

If H is finite dimensional, then ϕ preserves orthogonality in both directions (surjectivity is not assumed) if and only if there exists a unique transformation $\psi: H_{1} \rightarrow H_{1}$ which preserves orthogonality in both directions and for any $K \in H_{n}(2)$ holds. Moreover, if ϕ preserves principal
angles then ψ also preserves angles, thus in this case ϕ is of the form (3) with a unitary or antiunitary operator U on H.

Remark. We make some short remarks.

- We learn from [7] that if ϕ preserves principal angles then ϕ is of the form (2) even in the case $n \leq \operatorname{dim} H<3 n$.
- As for the case $\operatorname{dim} H=2 n \in \mathbb{N}$, observe that the bijection ϕ defined by $\phi(K)=K^{\perp}\left(K \in H_{n}\right)$ preserves principal angles, but is not of the form (3) (cf. [7]).
- We mention that the Theorem implies MolnÁr's result [7] in the case when H is finite dimensional.
- Our Theorem implies that surjective transformations on H_{n} which preserve orthogonality in both directions are the same as surjective transformations which preserve principle angles. In the case $n=1$ this is a trivial consequence of Uhlhorn's theorem.
- We note that in every step except Step 5 the condition $\operatorname{dim} H>2 n$ is enough, and we use the condition $\operatorname{dim} H>3 n$ in Step 5 only. It is possible to prove our theorem for $\operatorname{dim} H>2 n$, but in that case the proof of Step 5 is much longer, hence that case will be omitted.

The following Proposition shows that the Theorem is not valid if $\operatorname{dim} H=2 n \in \mathbb{N}$.

Proposition. If $2 \leq n \in \mathbb{N}$ and $\operatorname{dim} H=2 n$, then there exists a bijection $\phi: H_{n} \rightarrow H_{n}$ which preserves orthogonality in both directions but is not of the form (2).

2. Proofs

Proof of the Theorem. For any $M \in H_{(n)}$ let

$$
\begin{equation*}
\psi(V)=\overline{\operatorname{span}\left\{\phi(K) \mid K \in H_{n}, K \subseteq V\right\}} \tag{4}
\end{equation*}
$$

Since $V \in H_{(n)}$, there exists $M \in H_{n}$ with $M \perp V$. Now for any $K \in H_{n}$ with $K \subseteq V$, we have $M \perp K$ which implies $\phi(M) \perp \phi(K)$. Thus $\phi(M) \in$ H_{n} and $\phi(M) \perp \psi(V)$, hence $\psi(V) \in H_{(n)}$. Therefore $\psi: H_{(n)} \rightarrow H_{(n)}$.

Let $n \in \mathbb{N} \cup\{\infty\}$ such that (1) holds, and let $\phi: H_{n} \rightarrow H_{n}$ be an operator which preserves orthogonality in both directions. As in the statement of the Theorem, in the case $\operatorname{dim} H=\infty$ we also assume that ϕ is surjective. Clearly, if $n=\infty$ then $\operatorname{dim} H=\infty$.

Our theorem will be proved in several steps.
Step 1. For any $V_{1}, V_{2} \in H_{(n)}$ we have

$$
V_{1} \subseteq V_{2} \Leftrightarrow \psi\left(V_{1}\right) \subseteq \psi\left(V_{2}\right) \quad \text { and } \quad V_{1} \perp V_{2} \Leftrightarrow \psi\left(V_{1}\right) \perp \psi\left(V_{2}\right) .
$$

Now ψ is clearly injective.
Moreover, if $n<\infty$, then for any $K \in H_{n}$ obviously $\psi(K)=\phi(K)$ holds.

Let $V_{1}, V_{2} \in H_{(n)}$. If $V_{1} \subseteq V_{2}$ then, by (4), it is trivial that $\psi\left(V_{1}\right) \subseteq$ $\psi\left(V_{2}\right)$.

If $V_{1} \nsubseteq V_{2}$ then, by codim $V_{2} \geq n$, there exists $M \in H_{n}$ for which $M \perp V_{2}$ and $M \not \perp V_{1}$. Now there exists $N \in H_{n}$ with $N \subseteq V_{1}, M \not \perp N$. So $\phi(M) \not \perp \phi(N) \subseteq \psi\left(V_{1}\right)$, thus $\phi(M) \not \perp \psi\left(V_{1}\right)$. For any $K \in H_{n}, K \subseteq V_{2}$ we have $M \perp K$, which implies $\phi(M) \perp \phi(K)$. Hence, by (4), $\phi(M) \perp \psi\left(V_{2}\right)$. Thus $\psi\left(V_{1}\right) \not \perp \phi(M) \perp \psi\left(V_{2}\right)$, which yields $\psi\left(V_{1}\right) \nsubseteq \psi\left(V_{2}\right)$.

If $V_{1} \perp V_{2}$ then for any $M, N \in H_{n}, M \subseteq V_{1}, N \subseteq V_{2}$ we have $\phi(M) \perp \phi(N)$ which gives $\psi\left(V_{1}\right) \perp \psi\left(V_{2}\right)$.

If $V_{1} \not \perp V_{2}$ then there exist $M, N \in H_{n}$ with $M \subseteq V_{1}, N \subseteq V_{2}$ such that $M \not \perp N$. Now $\psi\left(V_{1}\right) \supseteq \phi(M) \not \perp \phi(N) \subseteq \psi\left(V_{2}\right)$, thus $\psi\left(V_{1}\right) \not \perp \psi\left(V_{2}\right)$.

Step 2. For any $V \in H_{(n)}$ we have

$$
\begin{equation*}
\operatorname{dim} \psi(V) \geq \operatorname{dim} V, \tag{5}
\end{equation*}
$$

$\operatorname{codim} \psi(V) \geq \operatorname{codim} V$.
Hence for any $m \in \mathbb{N} \cup\{\infty\}$ for which (1) holds, we have $\psi: H_{(m)} \rightarrow H_{(m)}$. Moreover, for any $K \in H_{n}$ we have $\phi(K)=\psi(K)$, which implies that ϕ is also injective.

If $\operatorname{dim} V=\infty$ then (5) is trivial. Assume that $n \leq \operatorname{dim} V<\infty$. Let $V_{k} \in H_{k}(n \leq k \leq \operatorname{dim} V)$ with $V_{n} \varsubsetneqq V_{n+1} \varsubsetneqq \cdots \varsubsetneqq V_{\operatorname{dim} V}=V$. By Step 1, we have $\psi\left(V_{n}\right) \varsubsetneqq \psi\left(V_{n+1}\right) \varsubsetneqq \cdots \varsubsetneqq \psi\left(V_{\operatorname{dim} V}\right)$, whence $n=\operatorname{dim} \psi\left(V_{n}\right)<$ $\operatorname{dim} \psi\left(V_{n+1}\right)<\cdots<\operatorname{dim} \psi\left(V_{\operatorname{dim} V}\right)=\operatorname{dim} V$, which implies (5).

Now, applying (5) to V^{\perp}, we obtain that $\operatorname{dim} \psi\left(V^{\perp}\right) \geq \operatorname{dim} V^{\perp}$. By Step 1, we have $\psi(V) \perp \psi\left(V^{\perp}\right)$, whence $\operatorname{codim} \psi(V)=\operatorname{dim} \psi(V)^{\perp} \geq$ $\operatorname{dim} \psi\left(V^{\perp}\right) \geq \operatorname{dim} V^{\perp}=\operatorname{codim} V(6)$.

If $\operatorname{dim} H<\infty$ then $\phi(K)=\psi(K)$ is now trivial.
Finally, let $\operatorname{dim} H=\infty$ and let $K \in H_{n}$ be arbitrary. Now ϕ is surjective by assumption, and, by (4), we have $\phi(K) \subseteq \psi(K)$. Suppose on the contrary that $\phi(K) \varsubsetneqq \psi(K)$. Then there exists $L \in H_{n}$ with $\phi(L) \not \perp \psi(K)$ and $\phi(L) \perp \phi(K)$. Hence by (4) there exists $M \in H_{n}$, $M \subseteq K$ with $\phi(M) \not \perp \phi(L)$. Now Step 1 yields $K \supseteq M \not \perp L \perp K$, which is a contradiction. Therefore $\phi(K)=\psi(K)$.

Step 3. If ϕ is a bijection then define ψ^{-1} for ϕ^{-1} as ψ was defined above for ϕ. Now for any $V \in H_{(n)}$ we have $\psi^{-1}(\psi(V))=\psi\left(\psi^{-1}(V)\right)=V$. Thus, if ϕ is a bijection, then so is ψ.

Let $V \in H_{(n)}$ and $K \in H_{n}$ be arbitrary with $K \subseteq \psi(V)$. Suppose on the contrary that $\phi^{-1}(K) \nsubseteq V$. Then there exists $L \in H_{n}$ with $L \not 又$ $\phi^{-1}(K), L \perp V$. Now $\phi(L) \not \perp K \subseteq \psi(V) \perp \phi(L)$, which is a contradiction. Thus for any $K \in H_{n}$ with $K \subseteq \psi(V)$ we have $\phi^{-1}(K) \subseteq V$. This yields $\psi^{-1}(\psi(V)) \subseteq V$. For any $K \in H_{n}$ with $K \subseteq V$ we have $\phi(K) \subseteq \psi(V)$, which implies $K=\phi^{-1}(\phi(K)) \subseteq \psi^{-1}(\psi(V))$. Hence $V \subseteq \psi^{-1}(\psi(V))$, and thus $\psi^{-1}(\psi(V))=V$.

Step 4. For any $V \in H_{(n)}$ we have $\operatorname{dim} \psi(V)=\operatorname{dim} V$ and $\psi\left(V^{\perp}\right)=$ $\psi(V)^{\perp}$.

If $\operatorname{dim} H<\infty$ then by Steps 1 and 2 we are done.
If ϕ is bijective then, applying (5) to ψ and ψ^{-1}, by Step 3 we obtain that $\operatorname{dim} V=\operatorname{dim} \psi^{-1}(\psi(V)) \geq \operatorname{dim} \psi(V) \geq \operatorname{dim} V$, which gives $\operatorname{dim} \psi(V)=\operatorname{dim} V$. Moreover,

$$
\psi^{-1}\left(\psi\left(V^{\perp}\right)^{\perp}\right) \perp \psi^{-1}\left(\psi\left(V^{\perp}\right)\right)=V^{\perp}
$$

whence $\psi^{-1}\left(\psi\left(V^{\perp}\right)^{\perp}\right) \subseteq V$. Steps 1 and 3 now yield that $\psi\left(V^{\perp}\right)^{\perp} \subseteq \psi(V)$. This implies $\psi\left(V^{\perp}\right) \supseteq \psi(V)^{\perp} \supseteq \psi\left(V^{\perp}\right)$.

Step 5. For any $X \in H_{1}$ and $V \in H_{n}$ with $V \perp X$, let

$$
\psi_{V}(X)=\psi(V)^{\perp} \cap \psi(V+X)
$$

Then $\operatorname{dim} \psi_{V}(X)=1$, and $\psi_{V}(X)$ does not depend on V. Now let $\psi(X)=$ $\psi_{V}(X)$.

Let $V \in H_{n}$ be arbitrary such that $V \perp X$. Step 1 implies $\psi(V) \varsubsetneqq$ $\psi(V+X)$, whence $\operatorname{dim} \psi_{V}(X) \geq 1$. If $\operatorname{dim} H<\infty$ then, by Step 4, we infer that $\operatorname{dim} \psi(V+X)=\operatorname{dim}(V+X)=\operatorname{dim}(V)+1=\operatorname{dim} \psi(V)+1$, whence $\operatorname{dim} \psi_{V}(X)=1$. Suppose temporarily that $\operatorname{dim} H=\infty$. Then ϕ and ψ are bijections. If $\operatorname{dim} \psi_{V}(X)>1$ then there exists $U \in H_{(n)}$ such that $\psi(V) \varsubsetneqq U \varsubsetneqq \psi(V+X)$. By Step 1 now we get $V \varsubsetneqq \psi^{-1}(U) \varsubsetneqq V+X$, which is a contradiction. Thus

$$
\begin{equation*}
\operatorname{dim} \psi_{V}(X)=1 \tag{7}
\end{equation*}
$$

for any $V \in H_{n}$ with $V \perp X$.
Suppose now that $n \in \mathbb{N}$. We show that for any $V_{1}, V_{2} \in H_{n}$ with $V_{1}, V_{2} \perp X$ we have $\psi_{V_{1}}(X)=\psi_{V_{2}}(X)$. By $\operatorname{dim} H>3 n$ there is $V \in H_{n}$ with $V \perp X, V_{1}, V_{2}$. We have $X+V_{1}+V \in H_{(n)}$, whence $\operatorname{dim} \psi\left(X+V_{1}+V\right)=$ $\operatorname{dim}\left(X+V_{1}+V\right)=2 n+1$. Now $\operatorname{dim}\left(\psi\left(X+V_{1}\right)\right)=\operatorname{dim}(\psi(X+V))=n+1$ and $\psi\left(X+V_{1}\right), \psi(X+V) \subseteq \psi\left(X+V_{1}+V\right)$ yield $\psi\left(X+V_{1}\right) \cap \psi(X+V) \neq \emptyset$. Let $Y \subseteq \psi\left(X+V_{1}\right) \cap \psi(X+V)$ with $\operatorname{dim} Y=1$. Then $Y \subseteq \psi\left(X+V_{1}\right) \perp$ $\psi(V)$ and $Y \subseteq \psi(X+V)$, hence $Y=\psi_{V}(X)$. Similarly, $Y=\psi_{V_{1}}(X)$, thus $\psi_{V_{1}}(X)=\psi_{V}(X)$. Similarly again, we obtain $\psi_{V_{2}}(X)=\psi_{V}(X)$, hence $\psi_{V_{1}}(X)=\psi_{V_{2}}(X)$.

Suppose now that $n=\infty$. Then ψ is a bijection. Let $V_{1}, V_{2} \in H_{n}$ be arbitrary with $V_{1}, V_{2} \perp X$. Then there exist $k \in \mathbb{N}$ and $U_{1}, \ldots, U_{k} \in H_{n}$ with $V_{1}=U_{1}, V_{2}=U_{k}, U_{1}, \ldots, U_{k} \perp X, U_{i} \perp U_{i+1}$ and $U_{i}+U_{i+1}+X \in$ $H_{(n)}$ for any $1 \leq i<k$. Let $1 \leq i<k$ be arbitrary. Now $\psi\left(U_{i}\right) \perp$ $\psi\left(U_{i+1}\right)+\psi_{U_{i}+U_{i+1}}(X) \subseteq \psi\left(U_{i}+U_{i+1}+X\right)$ implies $U_{i} \perp \psi^{-1}\left(\psi\left(U_{i+1}\right)+\right.$ $\left.\psi_{U_{i}+U_{i+1}}(X)\right) \subseteq U_{i}+U_{i+1}+X$. Thus $\psi^{-1}\left(\psi\left(U_{i+1}\right)+\psi_{U_{i}+U_{i+1}}(X)\right) \subseteq$ $U_{i+1}+X$, whence $\psi\left(U_{i+1}\right)+\psi_{U_{i}+U_{i+1}}(X) \subseteq \psi\left(U_{i+1}+X\right)$. By (7) and $\psi_{U_{i}+U_{i+1}}(X) \perp \psi\left(U_{i+1}\right)$ we obtain $\psi_{U_{i}+U_{i+1}}(X)=\psi_{U_{i+1}}(X)$. Similarly $\psi_{U_{i}+U_{i+1}}(X)=\psi_{U_{i}}(X)$, which yields $\psi_{U_{i}}(X)=\psi_{U_{i+1}}(X)$, and so we are ready.

Step 6. For any $X \in H_{1}$ and $V \in H_{(n)}, X \subseteq V$ implies that $\psi(X) \subseteq$ $\psi(V)$.

Let $X \in H_{1}$ and $V \in H_{(n)}$ with $X \subseteq V$. If $\operatorname{dim} V>n$ or $n=\infty$ then there exists $V_{0} \in H_{n}$ for which $V_{0} \subseteq V \cap X^{\perp}$, whence, by Step 5 , we obtain
that

$$
\psi(X)=\psi_{V_{0}}(X) \subseteq \psi\left(V_{0}+X\right) \subseteq \psi(V)
$$

Now assume that $n<\infty$ and $\operatorname{dim} V=n$. For any $U \in H_{n}$ with $U \subseteq V^{\perp}$, we have $\psi(X)=\psi_{U}(X)=\phi(U)^{\perp} \cap \psi(U+X) \perp \phi(U)$, and thus $\psi(X) \perp \psi\left(V^{\perp}\right)$. Step 4 now yields $\psi(X) \subseteq \psi\left(V^{\perp}\right)^{\perp}=\psi(V)$.

Step 7. For any $X, Y \in H_{1}$, we have

$$
X \perp Y \Leftrightarrow \psi(X) \perp \psi(Y)
$$

Suppose that $X \perp Y$. Then there are $M, N \in H_{n}$ such that $M \perp X$, $M \perp Y, N \perp X, N \perp M$ and $Y \subseteq N$. By Steps 1 and 6 , we obtain that $\psi(X) \subseteq \psi(X+M) \perp \phi(N) \supseteq \psi(Y)$, whence $\psi(X) \perp \psi(Y)$.

Now suppose that $X \not \perp Y$ and suppose on the contrary that $\psi(X) \perp$ $\psi(Y)$. Then there exists an $M \in H_{n}$ with $M \perp X, M \perp Y$. By Step 6 , it is easy to see that $\phi(M) \perp \psi(X)$ and $\phi(M) \perp \psi(Y)$. Thus $\psi(M+X)=$ $\psi(X) \oplus \phi(M) \perp \psi(Y)$. Let $K_{X}, N \in H_{n}$ such that $X \subseteq K_{X} \subseteq M+X$ and $Y, K_{X} \perp N$. Then $\phi\left(K_{X}\right) \perp \phi(N)$ and $\phi\left(K_{X}\right) \subseteq \psi(M+X) \perp \psi(Y)$. Hence $\psi(Y+N)=\psi(Y) \oplus \phi(N) \perp \phi\left(K_{X}\right)$. Now let $K_{Y} \in H_{n}$ with $Y \subseteq K_{Y} \subseteq Y+N$. Then $\phi\left(K_{Y}\right) \subseteq \psi(Y+N) \perp \phi\left(K_{X}\right)$, which implies $\phi\left(K_{X}\right) \perp \phi\left(K_{Y}\right)$. This leads to $X \subseteq K_{X} \perp K_{Y} \supseteq Y$, thus $X \perp Y$, which is a contradiction. Therefore $\psi(X) \not \perp \psi(Y)$ indeed.

Step 8. If ϕ is a bijection then $\psi: H_{1} \rightarrow H_{1}$ is also a bijection.
Let ϕ be a bijection. Now there exists $\psi^{-1}: H_{1} \rightarrow H_{1}$ corresponding to ϕ^{-1} as ψ corresponds to ϕ. We shall apply the above results also to ψ^{-1}. Let $V \in H_{1}$. Then there exist $V_{1}, V_{2} \in H_{n}$ for which $V=V_{1} \cap V_{2}$. Hence $\psi^{-1}(V) \subseteq \phi^{-1}\left(V_{1}\right) \cap \phi^{-1}\left(V_{2}\right)$, thus $\psi\left(\psi^{-1}(V)\right) \subseteq \phi\left(\phi^{-1}\left(V_{1}\right)\right)=V_{1}$ and $\psi\left(\psi^{-1}(V)\right) \subseteq \phi\left(\phi^{-1}\left(V_{2}\right)\right)=V_{2}$. This implies that $\{0\} \neq \psi\left(\psi^{-1}(V)\right) \subseteq$ $V_{1} \cap V_{2}=V$. By $\operatorname{dim} V=1$, we obtain that $\psi\left(\psi^{-1}(V)\right)=V$. Similarly, $\psi^{-1}(\psi(V))=V$. Now it is already clear that ψ is a bijection.

Step 9. For any $V \in H_{(n)}$, we have $\psi(V)=\operatorname{span}\left\{\psi(X) \mid X \in H_{1}\right.$, $X \subseteq V\}$.

By Step 6, it is clear that $\psi(V) \supseteq \operatorname{span}\left\{\psi(X) \mid X \in H_{1}, X \subseteq V\right\}$. If $\operatorname{dim} H<\infty$ then, by Steps 4 and 7 , we are ready.

Now let ϕ be surjective and let $Y \in H_{1}$ be arbitrary with $Y \subseteq \psi(V)$. Then, by Step $8, \psi$ is also a bijection. Applying Steps 3 and 6 to ψ^{-1}, we deduce that $\psi^{-1}(Y) \subseteq \psi^{-1}(\psi(V))=V$. Hence $Y=\psi\left(\psi^{-1}(Y)\right) \subseteq$ $\operatorname{span}\left\{\psi(X) \mid X \in H_{1}, X \subseteq V\right\}$. Thus $\psi(V) \subseteq \operatorname{span}\left\{\psi(X) \mid X \in H_{1}, X \subseteq V\right\}$, which completes the proof.

Step 10. If ϕ preserves principal angles then ψ also preserves angles.
Let $X, Y \in H_{1}$ be arbitrary, and let $N_{X}, N_{Y} \in H_{(n-1)}$ be orthogonal subspaces which are also orthogonal both to X and to Y, and for which $K_{X}=X \oplus N_{X} \in H_{n}$ and $K_{Y}=Y \oplus N_{Y} \in H_{n}$. Let $e_{\alpha}(\alpha \in A)$ be pairwise orthogonal 1-dimensional subspaces of N_{X} with $N_{X}=\operatorname{span}\left\{e_{\alpha} \mid \alpha \in A\right\}$, and similarly, let $f_{\beta}(\beta \in B)$ be pairwise orthogonal 1-dimensional subspaces of N_{Y} with $N_{Y}=\operatorname{span}\left\{f_{\beta} \mid \beta \in B\right\}$.

By Steps 7 and 9 , we have

$$
\begin{array}{ll}
P_{K_{X}}=P_{X}+\sum_{\alpha \in A} P_{e_{\alpha}}, & P_{\phi\left(K_{X}\right)}=P_{\psi(X)}+\sum_{\alpha \in A} P_{\psi\left(e_{\alpha}\right)}, \\
P_{K_{Y}}=P_{Y}+\sum_{\beta \in B} P_{f_{\alpha}}, & P_{\phi\left(K_{Y}\right)}=P_{\psi(Y)}+\sum_{\beta \in B} P_{\psi\left(f_{\beta}\right)},
\end{array}
$$

and so

$$
\begin{aligned}
& P_{\psi(X)} P_{\psi(Y)} P_{\psi(X)} \\
&=\left(P_{\psi(X)}+\sum_{\alpha \in A} P_{\psi\left(e_{\alpha}\right)}\right)\left(P_{\psi(Y)}+\sum_{\beta \in B} P_{\psi\left(f_{\beta}\right)}\right)\left(P_{\psi(X)}+\sum_{\alpha \in A} P_{\psi\left(e_{\alpha}\right)}\right) \\
& \quad=P_{\phi\left(K_{X}\right)} P_{\phi\left(K_{Y}\right)} P_{\phi\left(K_{X}\right)}=U_{K_{X}, K_{Y}} P_{K_{X}} P_{K_{Y}} P_{K_{X}} U_{K_{X}, K_{Y}}^{*} \\
& \quad=U_{K_{X}, K_{Y}}\left(P_{X}+\sum_{\alpha \in A} P_{e_{\alpha}}\right)\left(P_{Y}+\sum_{\beta \in B} P_{f_{\alpha}}\right)\left(P_{X}+\sum_{\alpha \in A} P_{e_{\alpha}}\right) U_{K_{X}, K_{Y}}^{*} \\
& \quad=U_{K_{X}, K_{Y}} P_{X} P_{Y} P_{X} U_{K_{X}, K_{Y}}^{*} .
\end{aligned}
$$

Now, by Steps 7, 8,9 and 10 , the proof of the Theorem is complete.
Proof of the Proposition. Let

$$
\mathcal{A}=\left\{\left\{K, K^{\perp}\right\} \mid K \in H_{n}\right\} .
$$

By the axiom of choice, there exists a set A which contains exactly one element of each set in \mathcal{A}. Let $\xi: A \rightarrow A$ be an arbitrary bijection, and
define $\phi: H_{n} \rightarrow H_{n}$ by

$$
\phi(K)= \begin{cases}\xi(K) & \text { if } K \in A \\ \xi\left(K^{\perp}\right)^{\perp} & \text { otherwise }\end{cases}
$$

It is clear that $\phi: H_{n} \rightarrow H_{n}$ is a bijection which preserves orthogonality in both directions. If $n \geq 2$ then it is easy to see that we may choose a bijection ξ such that ϕ is not of the form (2).

References

[1] V. Bargmann, Note on Wigner's theorem on symmetry operations, J. Math. Phys. 5 (1964), 862-868.
[2] M. GYŐRy, A new proof of Wigner's theorem (to appear).
[3] L. MolnÁr, An algebraic approach to Wigner's unitary-antiunitary theorem, J. Austral. Math. Soc. 65 (1998), 354-369.
[4] L. MolnÁr, A generalization of Wigner's unitary-antiunitary theorem to Hilbert modules, J. Math. Phys. 40 (1999), 5544-5554.
[5] L. MolnÁr, Generalization of Wigner's unitary-antiunitary theorem for indefinite inner product spaces, Commun. Math. Phys. 201 (2000), 785-791.
[6] L. MolnÁR, A Wigner type theorem on symmetry transformations in type II factors, Int. J. Theor. Phys. 39 (2000), 1463-1466.
[7] L. MolnÁr, Transformations on the set of all n-dimensional subspaces of a Hilbert space preserving principal angles, Commun. Math. Phys. 217 (2001), 437-450.
[8] C. S. Sharma and D. L. Almeida, A direct proof of Wigner's theorem on maps which preserve transition probabilities between pure states of quantum systems, Ann. Phys. 197 (1990), 300-309.
[9] U. Uhlhorn, Representation of symmetry transformations in quantum mechanics, Ark. Fysik 23 (1963), 307-340.

MÁTÉ GYŐRY

INSTITUTE OF MATHEMATICS
UNIVERSITY OF DEBRECEN
4010 DEBRECEN, P.O. BOX 12
HUNGARY
E-mail: gyorym@math.klte.hu
(Received March 30, 2004; revised June 7, 2004)

[^0]: Mathematics Subject Classification: 46C05, 46C50.
 Key words and phrases: Wigner's unitary-antiunitary theorem, orthogonality preserving. This research was supported by the Hungarian National Foundation for Scientific Research (OTKA), Grant No. F038326.

