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Transformations on the set of all n-dimensional subspaces
of a Hilbert space preserving orthogonality

By MÁTÉ GYŐRY (Debrecen)

To the memory of Professor B. Brindza

Abstract. In our paper we generalize Uhlhorn’s version of Wigner’s famous
unitary-antiunitary theorem by describing the transformations preserving the or-
thogonality between higher dimensional subspaces under certain conditions.

1. Introduction and Statement of the Results

Wigner’s classical unitary-antiunitary theorem has several formula-
tions. One of them describes the bijections on the set of all 1-dimensional
subspaces of a Hilbert space which preserve the angles between those sub-
spaces. This fundamental result has been extended in (at least) three
directions:

• if the underlying Hilbert space is at least three-dimensional, then,
keeping the condition of bijectivity, the assumption of preserving an-
gles can be replaced by the rather mild condition of preserving orthog-
onality in both directions; this is called Uhlhorn’s version of Wigner’s
theorem (cf. [9]),
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• keeping the condition of preserving angles, the assumption of bijec-
tivity can be omitted (in this case the transformation is induced by a
linear or conjugate linear isometry instead of a unitary or antiunitary
operator; see [1], [8]),

• Molnár [7] extended Wigner’s result to higher dimensional subspaces,
namely he obtained the following result. If n is a positive integer, H is
a Hilbert space with dimension not less than n and n = 1 or dimH �=
2n then any transformation φ on the set of all n-dimensional subspaces
of H, which preserves the so-called principal angles (see the definition
below) between those subspaces, is of the form φ(M) = V [M ], where
V is a linear or conjugate linear isometry on H. Moreover, if H is
an infinite dimensional Hilbert space, then a surjective transforma-
tion φ on the set of all infinite dimensional subspaces of H, which
preserves the principal angles between those subspaces, is of the form
φ(M) = U [M ], where U is a unitary operator or antiunitary operator
on H.

For further generalizations see e.g. [3]–[6]. In this paper we extend Wigner’s
theorem simultaneously in all the three directions above.

We introduce some concepts and notation. Let H be a (real or com-
plex) Hilbert space and for any n ∈ N ∪ {∞} set

Hn =
{
M ⊆ H | dimM = n, codimM ≥ n, M is a closed subspace

}
,

H(n) =
{
M ⊆ H | dimM ≥ n, codimM ≥ n, M is a closed subspace

}
.

We say that a transformation φ : Hn → Hn preserves orthogonality in both
directions, if for any M,N ∈ Hn we have

M ⊥ N ⇔ φ(M) ⊥ φ(N).

For any closed subspace M ⊆ H, let PM denote the orthogonal projection
to M . Following Molnár [7] we say that φ preserves principal angles if
for any K,L ∈ Hn the positive operators PKPLPK and Pφ(K)Pφ(L)Pφ(K)

are unitarily equivalent. It is clear that if φ preserves principal angles then
it also preserves orthogonality in both directions.

We now present our results. In the Theorem below we characterize the
transformations φ on Hn which preserve orthogonality in both directions
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under certain natural conditions. Our basic idea is to show that φ is
induced by a transformation acting on the 1-dimensional subspaces of H,
and then we apply Uhlhorn’s result [9].

To formulate the Theorem, we remark that if dimH < 2n then there
do not exist two orthogonal n-dimensional subspaces of H, thus in this
case the condition of preserving orthogonality has no meaning. In the
Proposition we show that the case in which dimH = 2n ∈ N is singular
in a certain sense. Further, if n = ∞ then subspaces of finite codimension
are clearly not orthogonal to any infinite dimensional subspace, and so
the property of preserving orthogonality cannot imply anything for them.
Therefore, in the case when n = ∞, we consider subspaces of infinite
dimension and infinite codimension. In the case 2n < dimH ≤ 3n the
proof of Step 5 would be much longer, hence we omit that case. These
justify the assumption (1) below.

Theorem. Let H be a Hilbert space and n ∈ N ∪ {∞} with{
dimH > 3n if n ∈ N,

dimH = ∞ if n = ∞,
(1)

and let φ : Hn → Hn.

If φ : Hn → Hn is surjective, then φ preserves orthogonality in both

directions if and only if there exists a unique bijection ψ : H1 → H1 which

preserves orthogonality in both directions, and for any K ∈ Hn we have

φ(K) = span
{
ψ(X) | X ∈ H1, X ⊆ K

}
, (2)

where span denotes the generated linear subspace.

Thus, by Uhlhorn’s theorem, if n ∈ N ∪ {∞} is such that (1) holds

and φ : Hn → Hn is surjective, then φ preserves orthogonality in both

directions if and only if there exists a unitary or antiunitary operator U

on H such that for any K ∈ Hn we have

φ(K) = U [K]. (3)

If H is finite dimensional, then φ preserves orthogonality in both di-

rections (surjectivity is not assumed) if and only if there exists a unique

transformation ψ : H1 → H1 which preserves orthogonality in both direc-

tions and for any K ∈ Hn (2) holds. Moreover, if φ preserves principal
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angles then ψ also preserves angles, thus in this case φ is of the form (3)
with a unitary or antiunitary operator U on H.

Remark. We make some short remarks.
• We learn from [7] that if φ preserves principal angles then φ is of the

form (2) even in the case n ≤ dimH < 3n.
• As for the case dimH = 2n ∈ N, observe that the bijection φ defined

by φ(K) = K⊥ (K ∈ Hn) preserves principal angles, but is not of the
form (3) (cf. [7]).

• We mention that the Theorem implies Molnár’s result [7] in the case
when H is finite dimensional.

• Our Theorem implies that surjective transformations on Hn which
preserve orthogonality in both directions are the same as surjective
transformations which preserve principle angles. In the case n = 1
this is a trivial consequence of Uhlhorn’s theorem.

• We note that in every step except Step 5 the condition dimH > 2n
is enough, and we use the condition dimH > 3n in Step 5 only. It is
possible to prove our theorem for dimH > 2n, but in that case the
proof of Step 5 is much longer, hence that case will be omitted.

The following Proposition shows that the Theorem is not valid if
dimH = 2n ∈ N.

Proposition. If 2 ≤ n ∈ N and dimH = 2n, then there exists a

bijection φ : Hn → Hn which preserves orthogonality in both directions

but is not of the form (2).

2. Proofs

Proof of the Theorem. For any M ∈ H(n) let

ψ(V ) = span
{
φ(K) | K ∈ Hn, K ⊆ V

}
. (4)

Since V ∈ H(n), there exists M ∈ Hn with M ⊥ V . Now for any K ∈ Hn

with K ⊆ V , we have M ⊥ K which implies φ(M) ⊥ φ(K). Thus φ(M) ∈
Hn and φ(M) ⊥ ψ(V ), hence ψ(V ) ∈ H(n). Therefore ψ : H(n) → H(n).
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Let n ∈ N ∪ {∞} such that (1) holds, and let φ : Hn → Hn be
an operator which preserves orthogonality in both directions. As in the
statement of the Theorem, in the case dimH = ∞ we also assume that φ
is surjective. Clearly, if n = ∞ then dimH = ∞.

Our theorem will be proved in several steps.

Step 1. For any V1, V2 ∈ H(n) we have

V1 ⊆ V2 ⇔ ψ(V1) ⊆ ψ(V2) and V1 ⊥ V2 ⇔ ψ(V1) ⊥ ψ(V2).

Now ψ is clearly injective.

Moreover, if n < ∞, then for any K ∈ Hn obviously ψ(K) = φ(K)
holds.

Let V1, V2 ∈ H(n). If V1 ⊆ V2 then, by (4), it is trivial that ψ(V1) ⊆
ψ(V2).

If V1 � V2 then, by codimV2 ≥ n, there exists M ∈ Hn for which
M ⊥ V2 and M �⊥ V1. Now there exists N ∈ Hn with N ⊆ V1, M �⊥ N . So
φ(M) �⊥ φ(N) ⊆ ψ(V1), thus φ(M) �⊥ ψ(V1). For any K ∈ Hn, K ⊆ V2 we
have M ⊥ K, which implies φ(M) ⊥ φ(K). Hence, by (4), φ(M) ⊥ ψ(V2).
Thus ψ(V1) �⊥ φ(M) ⊥ ψ(V2), which yields ψ(V1) � ψ(V2).

If V1 ⊥ V2 then for any M,N ∈ Hn, M ⊆ V1, N ⊆ V2 we have
φ(M) ⊥ φ(N) which gives ψ(V1) ⊥ ψ(V2).

If V1 �⊥ V2 then there exist M,N ∈ Hn with M ⊆ V1, N ⊆ V2 such
that M �⊥ N . Now ψ(V1) ⊇ φ(M) �⊥ φ(N) ⊆ ψ(V2), thus ψ(V1) �⊥ ψ(V2).

Step 2. For any V ∈ H(n) we have

dimψ(V ) ≥ dimV, (5)

codimψ(V ) ≥ codimV. (6)

Hence for any m ∈ N∪{∞} for which (1) holds, we have ψ : H(m) → H(m).

Moreover, for any K ∈ Hn we have φ(K) = ψ(K), which implies that φ is

also injective.

If dimV = ∞ then (5) is trivial. Assume that n ≤ dimV < ∞. Let
Vk ∈ Hk (n ≤ k ≤ dimV ) with Vn � Vn+1 � · · · � VdimV = V . By Step 1,
we have ψ(Vn) � ψ(Vn+1) � · · · � ψ(Vdim V ), whence n = dimψ(Vn) <
dimψ(Vn+1) < · · · < dimψ(VdimV ) = dimV , which implies (5).
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Now, applying (5) to V ⊥, we obtain that dimψ(V ⊥) ≥ dimV ⊥. By
Step 1, we have ψ(V ) ⊥ ψ(V ⊥), whence codimψ(V ) = dimψ(V )⊥ ≥
dimψ(V ⊥) ≥ dimV ⊥ = codim V (6).

If dimH <∞ then φ(K) = ψ(K) is now trivial.
Finally, let dimH = ∞ and let K ∈ Hn be arbitrary. Now φ is

surjective by assumption, and, by (4), we have φ(K) ⊆ ψ(K). Suppose
on the contrary that φ(K) � ψ(K). Then there exists L ∈ Hn with
φ(L) �⊥ ψ(K) and φ(L) ⊥ φ(K). Hence by (4) there exists M ∈ Hn,
M ⊆ K with φ(M) �⊥ φ(L). Now Step 1 yields K ⊇ M �⊥ L ⊥ K, which
is a contradiction. Therefore φ(K) = ψ(K).

Step 3. If φ is a bijection then define ψ−1 for φ−1 as ψ was defined

above for φ. Now for any V ∈H(n) we have ψ−1(ψ(V ))=ψ(ψ−1(V ))= V .

Thus, if φ is a bijection, then so is ψ.

Let V ∈ H(n) and K ∈ Hn be arbitrary with K ⊆ ψ(V ). Suppose
on the contrary that φ−1(K) � V . Then there exists L ∈ Hn with L �⊥
φ−1(K), L ⊥ V . Now φ(L) �⊥ K ⊆ ψ(V ) ⊥ φ(L), which is a contradiction.
Thus for any K ∈ Hn with K ⊆ ψ(V ) we have φ−1(K) ⊆ V . This yields
ψ−1

(
ψ(V )

) ⊆ V . For any K ∈ Hn with K ⊆ V we have φ(K) ⊆ ψ(V ),
which implies K = φ−1

(
φ(K)

) ⊆ ψ−1
(
ψ(V )

)
. Hence V ⊆ ψ−1

(
ψ(V )

)
,

and thus ψ−1
(
ψ(V )

)
= V .

Step 4. For any V ∈ H(n) we have dimψ(V ) = dimV and ψ(V ⊥) =
ψ(V )⊥.

If dimH <∞ then by Steps 1 and 2 we are done.
If φ is bijective then, applying (5) to ψ and ψ−1, by Step 3 we ob-

tain that dimV = dimψ−1
(
ψ(V )

) ≥ dimψ(V ) ≥ dimV , which gives
dimψ(V ) = dimV . Moreover,

ψ−1
(
ψ(V ⊥)⊥

) ⊥ ψ−1
(
ψ(V ⊥)

)
= V ⊥,

whence ψ−1
(
ψ(V ⊥)⊥

) ⊆ V . Steps 1 and 3 now yield that ψ(V ⊥)⊥ ⊆ ψ(V ).
This implies ψ(V ⊥) ⊇ ψ(V )⊥ ⊇ ψ(V ⊥).

Step 5. For any X ∈ H1 and V ∈ Hn with V ⊥ X, let

ψV (X) = ψ(V )⊥ ∩ ψ(V +X).
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Then dimψV (X) = 1, and ψV (X) does not depend on V . Now let ψ(X) =
ψV (X).

Let V ∈ Hn be arbitrary such that V ⊥ X. Step 1 implies ψ(V ) �
ψ(V + X), whence dimψV (X) ≥ 1. If dimH < ∞ then, by Step 4, we
infer that dimψ(V +X) = dim (V +X) = dim (V ) + 1 = dimψ(V ) + 1,
whence dimψV (X) = 1. Suppose temporarily that dimH = ∞. Then φ

and ψ are bijections. If dimψV (X) > 1 then there exists U ∈ H(n) such
that ψ(V ) � U � ψ(V +X). By Step 1 now we get V � ψ−1(U) � V +X,
which is a contradiction. Thus

dimψV (X) = 1 (7)

for any V ∈ Hn with V ⊥ X.
Suppose now that n ∈ N. We show that for any V1, V2 ∈ Hn with

V1, V2 ⊥X we have ψV1(X)=ψV2(X). By dimH > 3n there is V ∈Hn with
V ⊥X,V1, V2. We have X +V1 +V ∈H(n), whence dimψ(X + V1+ V ) =
dim(X+V1+V ) = 2n+1. Now dim

(
ψ(X+V1)

)
= dim

(
ψ(X+V )

)
= n+1

and ψ(X+V1), ψ(X+V ) ⊆ ψ(X+V1+V ) yield ψ(X+V1)∩ψ(X+V ) �= ∅.
Let Y ⊆ ψ(X + V1) ∩ ψ(X + V ) with dimY = 1. Then Y ⊆ ψ(X + V1) ⊥
ψ(V ) and Y ⊆ ψ(X+V ), hence Y = ψV (X). Similarly, Y = ψV1(X), thus
ψV1(X) = ψV (X). Similarly again, we obtain ψV2(X) = ψV (X), hence
ψV1(X) = ψV2(X).

Suppose now that n = ∞. Then ψ is a bijection. Let V1, V2 ∈ Hn be
arbitrary with V1, V2 ⊥ X. Then there exist k ∈ N and U1, . . . , Uk ∈ Hn

with V1 = U1, V2 = Uk, U1, . . . , Uk ⊥ X, Ui ⊥ Ui+1 and Ui + Ui+1 +X ∈
H(n) for any 1 ≤ i < k. Let 1 ≤ i < k be arbitrary. Now ψ(Ui) ⊥
ψ(Ui+1) + ψUi+Ui+1(X) ⊆ ψ(Ui + Ui+1 +X) implies Ui ⊥ ψ−1

(
ψ(Ui+1) +

ψUi+Ui+1(X)
) ⊆ Ui + Ui+1 + X. Thus ψ−1

(
ψ(Ui+1) + ψUi+Ui+1(X)

) ⊆
Ui+1 + X, whence ψ(Ui+1) + ψUi+Ui+1(X) ⊆ ψ(Ui+1 + X). By (7) and
ψUi+Ui+1(X) ⊥ ψ(Ui+1) we obtain ψUi+Ui+1(X) = ψUi+1(X). Similarly
ψUi+Ui+1(X) = ψUi(X), which yields ψUi(X) = ψUi+1(X), and so we are
ready.

Step 6. For any X ∈ H1 and V ∈ H(n), X ⊆ V implies that ψ(X) ⊆
ψ(V ).

Let X ∈ H1 and V ∈ H(n) with X ⊆ V . If dimV > n or n = ∞ then
there exists V0 ∈ Hn for which V0 ⊆ V ∩X⊥, whence, by Step 5, we obtain
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that
ψ(X) = ψV0(X) ⊆ ψ(V0 +X) ⊆ ψ(V ).

Now assume that n < ∞ and dimV = n. For any U ∈ Hn with
U ⊆ V ⊥, we have ψ(X) = ψU (X) = φ(U)⊥ ∩ ψ(U +X) ⊥ φ(U), and thus
ψ(X) ⊥ ψ(V ⊥). Step 4 now yields ψ(X) ⊆ ψ(V ⊥)⊥ = ψ(V ).

Step 7. For any X,Y ∈ H1, we have

X ⊥ Y ⇔ ψ(X) ⊥ ψ(Y ).

Suppose that X ⊥ Y . Then there are M,N ∈ Hn such that M ⊥ X,
M ⊥ Y , N ⊥ X, N ⊥ M and Y ⊆ N . By Steps 1 and 6, we obtain that
ψ(X) ⊆ ψ(X +M) ⊥ φ(N) ⊇ ψ(Y ), whence ψ(X) ⊥ ψ(Y ).

Now suppose that X �⊥ Y and suppose on the contrary that ψ(X) ⊥
ψ(Y ). Then there exists an M ∈ Hn with M ⊥ X, M ⊥ Y . By Step 6, it
is easy to see that φ(M) ⊥ ψ(X) and φ(M) ⊥ ψ(Y ). Thus ψ(M +X) =
ψ(X) ⊕ φ(M) ⊥ ψ(Y ). Let KX , N ∈ Hn such that X ⊆ KX ⊆ M + X

and Y,KX ⊥ N . Then φ(KX) ⊥ φ(N) and φ(KX) ⊆ ψ(M +X) ⊥ ψ(Y ).
Hence ψ(Y + N) = ψ(Y ) ⊕ φ(N) ⊥ φ(KX). Now let KY ∈ Hn with
Y ⊆ KY ⊆ Y + N . Then φ(KY ) ⊆ ψ(Y + N) ⊥ φ(KX), which implies
φ(KX) ⊥ φ(KY ). This leads to X ⊆ KX ⊥ KY ⊇ Y , thus X ⊥ Y , which
is a contradiction. Therefore ψ(X) �⊥ ψ(Y ) indeed.

Step 8. If φ is a bijection then ψ : H1 → H1 is also a bijection.

Let φ be a bijection. Now there exists ψ−1 : H1 → H1 corresponding
to φ−1 as ψ corresponds to φ. We shall apply the above results also to ψ−1.
Let V ∈ H1. Then there exist V1, V2 ∈ Hn for which V = V1 ∩ V2. Hence
ψ−1(V ) ⊆ φ−1(V1) ∩ φ−1(V2), thus ψ

(
ψ−1(V )

) ⊆ φ
(
φ−1(V1)

)
= V1 and

ψ
(
ψ−1(V )

) ⊆ φ
(
φ−1(V2)

)
= V2. This implies that {0} �= ψ

(
ψ−1(V )

) ⊆
V1 ∩ V2 = V . By dimV = 1, we obtain that ψ

(
ψ−1(V )

)
= V . Similarly,

ψ−1
(
ψ(V )

)
= V . Now it is already clear that ψ is a bijection.

Step 9. For any V ∈ H(n), we have ψ(V ) = span
{
ψ(X) | X ∈ H1,

X ⊆ V
}
.

By Step 6, it is clear that ψ(V ) ⊇ span{ψ(X) | X ∈ H1, X ⊆ V }.
If dimH <∞ then, by Steps 4 and 7, we are ready.
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Now let φ be surjective and let Y ∈ H1 be arbitrary with Y ⊆ ψ(V ).
Then, by Step 8, ψ is also a bijection. Applying Steps 3 and 6 to ψ−1,
we deduce that ψ−1(Y ) ⊆ ψ−1

(
ψ(V )

)
= V . Hence Y = ψ(ψ−1(Y )) ⊆

span{ψ(X) | X ∈H1, X ⊆V }. Thus ψ(V )⊆ span{ψ(X) |X ∈H1, X ⊆V },
which completes the proof.

Step 10. If φ preserves principal angles then ψ also preserves angles.

Let X,Y ∈ H1 be arbitrary, and let NX , NY ∈ H(n−1) be orthogonal
subspaces which are also orthogonal both to X and to Y , and for which
KX =X ⊕NX ∈Hn and KY =Y ⊕NY ∈Hn. Let eα (α ∈ A) be pairwise
orthogonal 1-dimensional subspaces of NX with NX = span{eα | α∈A},
and similarly, let fβ (β ∈ B) be pairwise orthogonal 1-dimensional sub-
spaces of NY with NY = span{fβ | β ∈ B}.

By Steps 7 and 9, we have

PKX
= PX +

∑
α∈A

Peα , Pφ(KX) = Pψ(X) +
∑
α∈A

Pψ(eα),

PKY
= PY +

∑
β∈B

Pfα , Pφ(KY ) = Pψ(Y ) +
∑
β∈B

Pψ(fβ ),

and so

Pψ(X)Pψ(Y )Pψ(X)

=
(
Pψ(X) +

∑
α∈A

Pψ(eα)

)(
Pψ(Y ) +

∑
β∈B

Pψ(fβ )

)(
Pψ(X) +

∑
α∈A

Pψ(eα)

)

=Pφ(KX)Pφ(KY )Pφ(KX) = UKX ,KY
PKX

PKY
PKX

U∗
KX ,KY

=UKX ,KY

(
PX +

∑
α∈A

Peα

)(
PY +

∑
β∈B

Pfα

)(
PX +

∑
α∈A

Peα

)
U∗
KX ,KY

=UKX ,KY
PXPY PXU

∗
KX ,KY

.

Now, by Steps 7, 8, 9 and 10, the proof of the Theorem is complete. �

Proof of the Proposition. Let

A =
{{K,K⊥} | K ∈ Hn

}
.

By the axiom of choice, there exists a set A which contains exactly one
element of each set in A. Let ξ : A → A be an arbitrary bijection, and
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define φ : Hn → Hn by

φ(K) =

{
ξ(K) if K ∈ A,
ξ(K⊥)⊥ otherwise.

It is clear that φ : Hn → Hn is a bijection which preserves orthogonality
in both directions. If n ≥ 2 then it is easy to see that we may choose a
bijection ξ such that φ is not of the form (2). �
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