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Experiments on the abc-conjecture

By ALAN BAKER (Cambridge)

Dedicated to the memory of Béla Brindza

Abstract. Computations based on tables maintained by A. Nitaj and pub-
licly available on the Internet are described that lend support to refinements to
the abc-conjecture of Oesterlé and Masser as proposed previously by the author.

1. Introduction

At a conference in Eger in 1996, some refinements were proposed to the

abc-conjecture which appeared to relate well to the theory of logarithmic

forms and to other aspects of Diophantine approximation [1]. In this note,

we shall describe some computations which provide support to the earlier

suggestions. We begin with a brief discussion of the abc-conjecture and its

remarkable mathematical significance.

Let a, b, c be integers with no common factor and satisfying

a+ b+ c = 0.

We define N as the ‘conductor’ or ‘radical’ of abc, that is the product of

all the distinct prime factors of abc. Motivated by a conjecture of Szpiro

comparing the discriminant and conductor of an elliptic curve, Oesterlé

Mathematics Subject Classification: 11D75, 11J25, 11J86.
Key words and phrases: abc-conjecture, logarithmic forms, computational results, n-
dimensional tetrahedra.



254 Alan Baker

formulated a simple assertion about the sizes of a, b, c and this was refined

by Masser [9] to give the following:

Conjecture 1. For any ε > 0, we have

max(|a|, |b|, |c|)¿ N1+ε,

where the implied constant depends only on ε.

The conjecture would not hold with ε = 0 as one verifies, for instance,

by taking a = 1, b = −32n
and noting that then 2n divides c (see [7]).

Masser was influenced by a theorem of Mason [8] that arose from studies

on logarithmic forms and had already established the analogue of the con-

jecture for function fields; Stothers [12] had independently come upon

the same result by way of the theory of Riemann surfaces. Various gen-

eralisations of the abc-conjecture in the context of algebraic number fields

have been given by Vojta [14]1.

The conjecture has many striking consequences and it is now recog-

nized as one of the key problems of mathematics. In particular, it shows at

once that, for given positive integers a, b, c, the Fermat–Catalan equation

axr + bys + czt = 0

has only finitely many solutions in relatively prime integers x, y, z and pos-

itive exponents r, s, t satisfying λ < 1, where λ = (1/r) + (1/s) + (1/t); if

the constant in Conjecture 1 were effective, then all solutions could be effec-

tively determined. In fact by Conjecture 1 we have max(|x|r, |y|s, |z|t) ¿

|xyz|1+ε, where the implied constant depends on a, b, c and ε, whence

|xyz| ¿ |xyz|(1+ε)λ and so, on taking ε sufficiently small, it follows that

|x|, |y| and |z| are bounded. In another direction, Elkies has demonstrated

that the abc-conjecture furnishes readily the famous theorem of Faltings

on the Mordell conjecture and, furthermore, Langevin and Bombieri have

shown that it gives the Thue–Siegel–Roth theorem.

Even more remarkably, if one assumes a so-called uniform abc-conjec-

ture for number fields in the style of Vojta, then, asGranville and Stark

[6] have demonstrated, one can prove the non-existence of the Siegel zero

1I am grateful to Serge Lang for drawing my attention to the paper of van Franken-

huysen [13] which contains an interesting discussion relating to Vojta’s work.
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for Dirichlet L-functions. An effective uniform abc-conjecture would make

effective Siegel’s theorem on the size of the class number of an imaginary

quadratic field and then, in view of work of Baker and Schinzel on the

genera of binary quadratic forms, it would enable one to resolve in princi-

ple the famous ‘numeri idonei’ problem of Euler (see [2]). In yet another

direction Granville [5] has demonstrated that the abc-conjecture would

imply various results on square-free numbers of a kind studied by Hooley

and others. All the applications of Conjecture 1 are basically straightfor-

ward though in some instances a theorem of G. V. Bely̌i [3] is utilized

implying that, for any complete non-singular algebraic curve X defined

over the algebraic closure of Q, there exists a covering X → P1 with three

ramification points.

2. Interplay with logarithmic forms

There is a close connexion between the abc-conjecture and the theory

of logarithmic forms. In fact it provides the only approach to date that

gives a non-trivial estimate for max(|a|, |b|, |c|), namely

logmax(|a|, |b|, |c|)¿ N1/3(logN)3,

where the implied constant is absolute. The result is due to Stewart and

Yu Kunrui [10], refining earlier work of Stewart and Tijdeman [11];

the proof is based on an archimedean estimate for logarithmic forms and

some long and detailed papers by Yu Kunrui establishing non-archimedean

analogues.

Though, as remarked in [2], it seems unlikely that the latter approach

in itself is powerful enough to furnish results approximating the strength of

Conjecture 1, the theory of logarithmic forms gives grounds for optimism

nonetheless. To explain this, we need to discuss the refinements to the abc-

conjecture mentioned at the beginning which were proposed at the Eger

conference [1]. Let ω(n) denote the number of distinct prime factors of an

integer n and define ω = ω(abc). Further let Θ(N) denote the number of

positive integers up to N that are composed only of prime factors of N .

Conjecture 2. We have

max(|a|, |b|, |c|)¿ N(logN)ω/ω! ,
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or, more simply, max(|a|, |b|, |c|) ¿ NΘ(N), where the implied constants

are absolute.

Conjecture 3. There is an absolute constant κ such that

max(|a|, |b|, |c|)¿ N((logN)/ω(ab))κω(ab),

where the implied constant is absolute.

Now consider the logarithmic form

Λ = u1 log v1 + . . .+ un log vn,

where v1, . . . , vn are positive integers and u1, . . . , un are integers, not all 0.

Assuming that Λ 6= 0 we can write Λ = log(a/b) for unique positive integers

a, b with (a, b) = 1. We put c = a − b and we note that, if p is a prime

dividing c, then log(a/b) exists in the p-adic sense and we have |Λ|p = |c|p;

if p does not divide c we simply define |Λ|p = 1. Then in the case that

a = b + c with a, b, c positive, Conjecture 3 is equivalent to an estimate

for the expression

Ξ = min(1, |Λ|)
∏

min(1, p|Λ|p),

with the product taken over all primes p; in a slightly weaker form, this

estimate is given by

log ΞÀ −(log v1 + . . .+ log vn) log u,

where u = max |uj |. Thus we see that a result of the strength of the abc-

conjecture sufficient for all its main applications amounts essentially to

(i) replacing the archimedean valuation |Λ| by Ξ in the Baker–Wüstholz

estimate

log |Λ| > −C(n, d)h′(α1) . . . h
′(αn)h

′(L)

for the non-vanishing logarithmic form L = b1z1 + . . .+ bnzn, where

Λ = L(logα1, . . . , logαn) 6= 0,

together with (ii) replacing the product h′(α1) . . . h
′(αn) of the heights of

the α’s by the sum h′(α1) + . . . + h′(αn). Hitherto the archimedean and

non-archimedean valuations have been treated individually and it would

seem that the way forward for future research is to seek to combine them

in an analogous way to the product formula in algebraic number theory.
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3. Computational results

We come now to the main point of this note which is to describe

some experimental results based on tables available on the Internet that

give extreme values of a, b, c satisfying the hypotheses at the beginning

(see the site http://www.unicaen.fr/∼nitaj/abc.html maintained by Ab-

derrahmane Nitaj). I am indebted to Jörg Waldvogel at ETH Zürich for

generously supplying an initial set of computational results in this context

and to Tom Fisher at the CMS Cambridge for furnishing a more recent

set which we describe here. I first learned of the tables from a Colloquium

Lecture at the University of Zürich given in December 2002 by Gisbert

Wüstholz; he presented certain graphical evidence on the Oesterlé–Masser

conjecture and I acknowledge with gratitude discussions that he and I and

Jörg Waldvogel had subsequently about this.

In view of the graphs described in §4 below, it would seem that we can

now formulate a completely explicit version of the abc-conjecture, namely

Conjecture 4. We have

max(|a|, |b|, |c|) < 6
5N(logN)ω/ω! .

The corresponding result for Θ(N) is

max(|a|, |b|, |c|) < 24NΘ(N).

The constant 6
5 in Conjecture 4 seems relatively secure. The constant 24

above seems less so and it is conceivable that it may need to be increased if

a particularly good abc example were to emerge. Nonetheless it is unlikely

that the bound would go much beyond this. The difference in our confi-

dence relating to these constants lies in the fact that the function Θ(N)

would appear to be in tighter agreement with the abc-conjecture than its

approximation (logN)ω/ω! .

Note that Conjecture 4 gives immediately a proof of Fermat’s Last

Theorem. For certainly we have (logN)ω/ω! 6 N and so if xn+ yn= zn

then Conjecture 4 implies that zn < 6
5(xyz)

2 6
6
5z

6. Alternatively we can

use the associated conjecture for Θ(N) since obviously Θ(N) 6 N . Note

also that Conjecture 4 or its analogue for Θ(N) enables one to give an

explicit expression for the implied constant depending on ε in the basic
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Oesterlé–Masser conjecture. In fact the function Θ(N) is related to clas-

sical questions concerning the number of lattice points in n-dimensional

tetrahedra and F. Beukers [4] has shown in this context that the number

of non-negative integers k1, . . . , kn with k1ρ1 + . . .+ knρn 6 x is given by

xn

n!ρ1 . . . ρn
+

1

2(n− 1)!

ρ1 + . . .+ ρn
ρ1 . . . ρn

xn−1 + o(xn−1).

I would be interested to know if there is a recognized name for the function

Θ; it was Granville who first pointed out that Θ(N) and the function

(logN)ω/ω! are of a similar order of magnitude, and indeed this follows

readily from the result of Beukers above2, but I have been unable to find

explicit reference to Θ in the literature3. I would also be most interested

if anyone were able to compute a counter-example to Conjecture 4.

4. The graphs

We have computed graphs of log c against log(N(logN)ω/ω!) and

log(NΘ(N)) respectively over the 196 extremal abc-examples, with c =

a + b, listed in the tables referred to in §3 (as of June 2004). The data

gives in each case an essentially linear array approximating in the first

instance to the line c = 1.1998N(logN)ω/ω! and in the second instance

to the line c = 23.227NΘ(N). Note that these lines have slope 1 and

their intersections with the vertical axes yield the values of the numerical

factors.

In the first graph the points closest to the line correspond to a = 2,

b = 310.109, c = 235 and to a = 19.1307, b = 7.292.318, c = 28.322.54. In

the second graph the points closest to the line correspond to a = 19.1307,

b = 7.292.318, c = 28.322.54, to a = 72.412.3113, b = 1116.132.79, c =

2.33.523.953 and to a = 34.72.41, b = 225.2277, c = 59.118.2489197589.

2A deduction of this kind, which is attributed to Ennola, occurs in the work of Stewart
and Tijdeman [11]; they prove there that there exist infinitely many a, b, c with a+b = c
and no common factor such that log(c/N) > (4− δ)(logN)1/2/ log logN for any δ > 0.
3Serge Lang has recently informed me of an estimate by Valentin Bromer, namely
logΘ(N) 6 (log 4 + o(1)) logN/ log logN .



Experiments on the abc-conjecture 259

0

10

20

30

40

50

60

10 20 30 40 50 60

� ��
�

� ���	��
�� � ���

���������� �

� �	���
��� �
�

 "!$#!&% %
'"(
) �

*,+ (.-
/10 2&3

10

20

30

40

50

60

0 10 20 30 40 50 60

4 56
7

8 9�:	;�<>=?; <�@A@

B C	D�E
F�G D
H

I	J�KMLJ
J�N
OQP"R

O.S

I understand from Tom Fisher, and also from Jörg Waldvogel in con-

nexion with the original versions, that producing these graphs from the
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publicly available data was an essentially straightforward computational

task. The only point requiring special attention was the calculation of the

function Θ(N) and here a naive recursive method sufficed for the particular

range of N and did not require any substantial computing time.
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