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On a theorem of Tartakowsky

By MICHAEL A. BENNETT (Vancouver)

Dedicated to the memory of Béla Brindza

Abstract. Binomial Thue equations of the shape Aan − Bbn = 1 possess,
for A and B positive integers and n ≥ 3, at most a single solution in positive
integers a and b. In case n ≥ 4 is even and A = 1, an old result of Tartakowsky
characterizes this solution, should it exist, in terms of the fundamental unit in
Q(
√

B ). In this note, we extend this to certain values of A > 1.

1. Introduction

If F (x, y) is an irreducible binary form of degree n ≥ 3, then the Thue
equation

F (x, y) = m

has, for a fixed nonzero integer m, at most finitely many solutions which
may, via a variety of techniques from the theory of Diophantine approxima-
tion, be effectively determined (see e.g. Tzanakis and de Weger [14]).
In general, the number of such solutions may depend upon the degree of F ,
but, as proven by Mueller and Schmidt [10], is bounded solely in terms
of m and the number of monomials of F . In the special case where m ≤ 2
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and the number of monomials is minimal, we have the following recent
theorem of the author’s:

Theorem 1.1 ([2]). If A, B and n are nonzero integers with n ≥ 3,

then the inequality

|Aan −Bbn| ≤ 2

has at most one solution in positive integers (a, b).

In particular, an equation of the form

Aan −Bbn = 1 (1.1)

has, for fixed AB 6= 0 and n ≥ 3, at most a single positive solution (a, b)
(this is, in fact, the main result of [1]). This statement, while in some
sense sharp, fails to precisely characterize the solutions that occur. Given
the existence of a pair of integers (a, b) satisfying (1.1), for instance, it
would be of some interest to determine their relationship with the structure
of Q( n

√
B/A ), in particular with the fundamental unit(s) in the ring of

integers of this field. A prototype of the result we have in mind is the
following special case of a theorem of Ljunggren [9] (cf. Nagell [11]):

Theorem 1.2 (Ljunggren). If A > 1 and B are positive integers,

then if a and b are positive integers for which

Aa3 −Bb3 = 1,

we necessarily have that
(
a

3
√

A− b
3
√

B
)3

is either the fundamental unit or its square in the field Q( 3
√

A/B ).

A like result was obtained earlier in the case A = 1. For larger (even)
values of n, where, additionally, we assume that A = 1, we have a result
stated by Tartakowsky [13] and proved by Af Ekenstam [6]:

Theorem 1.3 (Tartakowsky, Af Ekenstam). Let n and B be integers

with n ≥ 2, B positive and nonsquare and (n,B) 6= (2, 7140). If there

exist positive integers a and b such that

a2n −Bb2n = 1, (1.2)
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then

u1 = an and v1 = bn.

If (n,B) = (2, 7140), then equation (1.2) has precisely one solution in

positive integers, corresponding to

u2 = 2392 and v2 = 262.

Here and subsequently, we define u1 and v1 to be the smallest positive
integers such that u2

1 −Bv2
1 = 1 and set

uk + vk

√
B = (u1 + v1

√
B )k.

Our goal in this paper is to consider the more general equation

M2a2n −Bb2n = 1. (1.3)

In case M = 2n−1, an analogous result to Theorem 1.3 is noted without
proof by Ljunggren (as Theorem II of [8]). In [3], this is generalized to
M = 2α for arbitrary nonnegative integer α. Here, we extend this result to
(certain) larger values of M . Specifically, defining P (M) to be the largest
prime divisor of M , we prove

Theorem 1.4. Let M , n and B be positive integers with M, n ≥ 2,

B nonsquare and P (M) ≤ 13. If there exist positive integers a and b

satisfying (1.3), then either u1 = Man and v1 = bn, or one of (M, n, B) =
(1, 2, 7140) or (7, 2, 3). In these latter cases, we have u2 = Man and

v2 = bn.

2. The case n = 2

We begin our proof of Theorem 1.4 by treating the case n = 2. Here,
we will deduce something a bit stronger, generalizing Corollary 1.3 of [5]
in the process:

Proposition 2.1. Let M,B >1 be squarefree integers with P (M)≤ 13.
Then if there exist positive integers a and c satisfying the Diophantine

equation

M2a4 −Bc2 = 1, (2.1)
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we necessarily have Ma2 = uk with k = 1 unless either M = 7 (in which

case k = 1 or k = 2, but not both) or

(M, B) ∈ {(11, 2), (26, 3), (26, 16383), (55, 1139), (1001, 571535)} , (2.2)

where we have k = 3.

The aforementioned Corollary 1.3 of [5] is just the above result under
the more restrictive assumption P (M) ≤ 11. We will thus assume for the
remainder of this section that 13 | M . Our argument is similar to that
given in [5]; we will suppress many of the details.

From Theorem 1.2 and Lemma 5.1 of [5], we have Ma2 = uk with k a
positive integral divisor of 420. Since u2j = 2u2

j − 1 and 13 | M , we may
suppose that k is odd. Now, by the classical theory of Pell’s equation, we
have that

uk = Tk(u1),

where Tk(x) denotes the kth Tschebyscheff polynomial (of the first kind),
satisfying

Tk(x) = cos (k arccosx) = xk +
(

k

2

)
xk−2(x2 − 1) + · · ·

for k a nonnegative integer. Since Tk1k2(x) = Tk1(Tk2(x)) for positive inte-
gers k1 and k2, to conclude as desired, we need only solve the Diophantine
equations

Tk(x) = Ma2, k ∈ {3, 5, 7} (2.3)

in integers x and a with x > 1. If k = 5 or k = 7, we note that Tk(x) =
x(16x4 − 20x2 + 5) or x(64x6 − 112x4 + 56x2 − 7), respectively. Since

gcd(16x4 − 20x2 + 5, 2 · 3 · 7 · 11 · 13) = 1,

in the first case, from (2.3), we necessarily have

16x4 − 20x2 + 5 = 5δu2

for some u ∈ Z and δ ∈ {0, 1}. Arguing as in the proof of Corollary 1.3 of
[5] leads to a contradiction if x > 1. In case k = 7, since

gcd(64x6 − 112x4 + 56x2 − 7, 2 · 3 · 5 · 11 · 13) = 1,
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it follows that
64x6 − 112x4 + 56x2 − 7 = 7δu2,

again for u ∈ Z and δ ∈ {0, 1}. From the inequalities

(8x3 − 7x)2 < 64x6 − 112x4 + 56x2 − 7 < (8x3 − 7x + 1)2

valid for x > 1, we may suppose that δ = 1 (so that 7 | x). It follows that
7 | u2 + 1, again a contradiction.

Finally, if k = 3, we are left to consider equations of the form

x(4x2 − 3) = Ma2, P (M) ≤ 13.

Via (nowadays) routine computations using linear forms in elliptic loga-
rithms and lattice basis reduction (as implemented, for example, in Mag-
ma), we find that the only solutions to these equations with x > 1 corre-
spond to

x ∈ {2, 3, 128, 135, 756} .

This, after a simple calculation, completes the proof of Proposition 2.1.
To apply this to Theorem 1.4 in case n = 2, let us begin by supposing

that there exist positive integers a and b such that

M2a4 −Bb4 = 1. (2.4)

Writing B = B0B
2
1 with B0 squarefree, we will, as previously, take u1 and

v1 for the smallest positive integers with u2
1 − Bv2

1 = 1 and suppose that
u∗1 and v∗1 are the smallest positive integers satisfying (u∗i )

2−B0(v∗1)
2 = 1.

From Proposition 2.1, it follows that Ma2 = u∗k and B1b
2 = v∗k for k ≤ 3.

Since u∗k ≤ uk for all k, it remains to show that k = 1. If k = 3, from (2.2),

Ma2 ∈ {26, 99, 8388224, 9841095, 1728322596} .

In each case, we find that M2a4 − 1 is fourth-power free, except if Ma2 =
9841095 where 16 | M2a4 − 1. It follows that either B or 16B is equal to
M2a4 − 1, contradicting, in every case, k > 1.

If k = 2, then, from Proposition 2.1, we have M = 7 and hence

7a2 = u∗2 = 2(u∗1)
2 − 1, B1b

2 = v∗2 = 2u∗1v
∗
1.
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If u∗1 < u1 then necessarily 7a2 = u1, as desired. We may thus suppose
that u1 = u∗1 and hence that u∗1 is coprime to B1. From the first of the
above two equations, we may conclude that u∗1 is even whereby, from the
second, u∗1 = 2r2 for some integer r. The first equation then implies that

8r4 − 7a2 = 1

whence, from Proposition 2.1, |ar| = 1. We thus have Bb4 = 48, as
claimed.

3. Larger values of n

Let us now suppose that n ≥ 3 is prime. Let ε = u+v
√

B where u and
v are positive integers (to be chosen later) with u2 −Bv2 = 1. Defining

Ek =
εk − ε−k

ε− ε−1
,

if p is an odd positive integer, then we have the following identities:
(
E p+1

2
−E p−1

2

)(
E p+1

2
+ E p−1

2

)
= Ep (3.1)

(u + 1)
(
E p+1

2
−E p−1

2

)2
− (u− 1)

(
E p+1

2
+ E p−1

2

)2
= 2 (3.2)

(u + 1)
(
E p+1

2
−E p−1

2

)2
+ (u− 1)

(
E p+1

2
+ E p−1

2

)2
= εp + ε−p. (3.3)

If we suppose that there exist positive integers a and b with M2a2n −
Bb2n = 1, we may write

Man + bn
√

B = (u1 + v1

√
B )m (3.4)

for some positive integer m. We separate our proof into two cases, de-
pending on whether or not m has an odd prime divisor p. If such a prime
p exists, define

ε = a1 + b1

√
B = (u1 + v1

√
B )m/p,

so that
Man + bn

√
B = (a1 + b1

√
B )p. (3.5)
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Expanding via the binomial theorem and equating coefficients, we thus
may write

Man = a1 · a2, bn = b1 · b2

where a2 and b2 are odd integers with

gcd(a1, a2), gcd(b1, b2) ∈ {1, p}

and neither a2 nor b2 divisible by p2. It follows that there exists a positive
integer s such that either b1 = sn or b1 = pn−1sn. In the first case,
Ep = (b/s)n and so, from (3.1) and the fact that the two factors on the
left hand side of (3.1) are coprime,

E p+1
2
− E p−1

2
= Pn and E p+1

2
+ E p−1

2
= Qn,

for some positive integers P and Q. Equation (3.2) thus yields

(a1 + 1)P 2n − (a1 − 1)Q2n = 2

and so, via Theorem 1.1, P = Q = 1, contradicting p > 1.
We may thus suppose that b1 = pn−1sn (so that, in particular, p fails

to divide a1 · a2, whence a1 and a2 are coprime). Then we have Ep = pyn
0

for some positive integer y0 and so (3.1) implies that

E p+1
2
± E p−1

2
= pPn and E p+1

2
∓E p−1

2
= Qn,

for P and Q positive integers. Applying (3.2) and (3.3), we thus have
either

(a1 +1) p2P 2n− (a1− 1)Q2n = 2, (a1 +1) p2P 2n +(a1− 1) Q2n = 2Man

or

(a1 +1)Q2n− (a1−1) p2P 2n = 2, (a1 +1)Q2n +(a1−1) p2P 2n = 2Man.

It follows that
2(a1 ± 1)Q2n ∓ 2 = 2Man.

If we suppose that a1 = Mrn, for some integer r, then
∣∣(Mrn ± 1)Q2n −Man

∣∣ = 1,
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whereby, applying Theorem 1.1, we have Q = 1, a = r, again a contradic-
tion.

Finally, if a1 6= Mrn for any integer r, then gcd(M,a2) > 1. Since we
assume that P (M) ≤ 13, it follows that a2 has a prime divisor in the set
{2, 3, 5, 7, 11, 13}. As is well known, we may write

a1 · a2 = Tp(a1) (3.6)

where Tp(x) is, again, the pth Tschebyscheff polynomial of the first kind.
These satisfy the recursion

T2k+1(x) = (4x2 − 2)T2k−1(x)− T2k−3(x),

where T1(x) = x and T3(x) = 4x3−3x. From this recursion, (3.6), and the
fact that gcd(a1, a2) = 1, it is easy to check that a2 is coprime to 210. For
example, if we have a1 ≡ ±1 (mod 7), then a2 ≡ 1 (mod 7) for all odd p,
while a1 ≡ ±2 (mod 7) implies that a2 ≡ 1 (mod 7) if p ≡ ±1 (mod 8),
a2 ≡ −1 (mod 7) if p ≡ ±3 (mod 8). Finally, if a1 ≡ ±3 (mod 7), then
a2 ≡ 1 (mod 7) unless p = 3 (whence a2 ≡ −2 (mod 7)).

The situation modulo 11 or 13 is slightly more complicated. In each
case, since p is an odd prime, we have, from the above recursion, that
11 | a2 or 13 | a2 only when p = 3. In this case, b2 = 4a2

1 − 1 = 3tn for
some integer t whereby, upon factoring, we deduce the existence of integers
c and d for which cn−3dn = 2 with |cd| = t. It follows, from Theorem 1.1,
that t = 1, contradicting a1 > 1.

We are thus left to treat equation (3.4) with m = 2α for α a nonneg-
ative integer. Our claim will follow directly if we can show that α = 0. If
α > 0, then there exist integers u and v for which

Man + bn
√

B =
(
u + v

√
B

)2
,

whereby
2u2 − 1 = Man (3.7)

and
2uv = bn. (3.8)

The first of these equations implies, since we assume 3 ≤ P (M) ≤ 13, that
M = 7β for some positive integer β.
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Now either u is even, in which case, from (3.8), there exist integers
l and w for which u = 2n−1ln, v = wn, or u is odd, whence u = ln,
v = 2n−1wn. In the first of these cases, from (3.7), we conclude that

22n−1l2n − 7βan = 1.

Arguing as in Kraus [7] (with minor complications at n = 5 and n = 7),
this equation has no solutions with n ≥ 5 prime. Modulo 7, the same is
true for n = 3. In the second case, we have

2l2n − 7βan = 1, (3.9)

where l is an odd integer. To treat this equation, we consider the Frey
curve

E : Y 2 = X3 + 2X2 + 2l2nX.

If p is a prime, coprime to 14aln, define

ap = p + 1−#E(Fp).

For n ≥ 11 is prime, applying techniques of [4], there exists a weight 2,
level 896 cuspidal newform f =

∑
cnqn such that, if p is a prime, again

coprime to 14aln, we have

NormKf /Q (cp − ap) ≡ 0 (mod n). (3.10)

Similarly, if p | al but p fails to divide 14n,

NormKf /Q (cp ± (p + 1)) ≡ 0 (mod n). (3.11)

From Stein’s Modular Forms Database [12], we see that all the one di-
mensional forms at level 896 have c3 = 0. A simple calculation shows
that a3 = 2 for our Frey curve, provided 3 fails to divide l and hence one
of (3.10) or (3.11) implies that f is not one dimensional. For the higher
dimensional forms labelled (in Stein’s notation) 5–12, we have c3 = θ with
θ2±2θ−2 = 0 or θ3±2θ2−6θ∓8 = 0. Calculating with (3.10) and (3.11)
shows that necessarily n = 11 and 3 | la. In this case, modulo 23, we have
that 11 | β, contradicting Theorem 1.1 (since the equation X11−2Y 11 = 1
has no solutions with |XY | > 1).
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To deal with the remaining values of n ∈ {3, 5, 7}, we employ (mostly)
local considerations. For example, equation (3.9) has no solutions mod-
ulo 7, provided n = 3. For n = 5, considering (3.9) modulo 11, we find
that necessarily 5 | β. Since the equation X5 − 2Y 5 = 1 has, by Theo-
rem 1.1, no solutions in integers X and Y with |XY | > 1, this leads to a
contradiction. If n = 7, (3.9) is insoluble modulo 49 if β ≥ 2. We are left
then to deal with the Diophantine equation

2l14 − 7a7 = 1.

Here, we may show that there are no local obstructions to solubility but
employing, for instance, a “Thue-solver” such as that implemented in
Magma, we find that there are, in fact no solutions in integers l and a.
This completes the proof of Theorem 1.4.
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