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Mahler’s classification of numbers compared
with Koksma’s, III

By YANN BUGEAUD (Strasbourg)

To the memory of Professor B. Brindza

Abstract. Let n ≥ 1 be an integer. In the 1930’s, Mahler and Koksma
defined on the set C of complex numbers the functions wn and w∗n, respectively,
and used them to classify C into four classes. It turns out that both classifications
are equivalent. However, when n ≥ 2, there exist complex numbers ξ for which
wn(ξ) and w∗n(ξ) are different. In the present note, we prove that the inequalities
0 ≤ w2(ξ)− w∗2(ξ) ≤ 1 and 0 ≤ w3(ξ)− w∗3(ξ) ≤ 2 are essentially best possible.

1. Introduction

Let n ≥ 1 be an integer and ξ be a complex number. We denote by
wn(ξ) the supremum of the exponents w for which

0 < |P (ξ)| < H(P )−w

has infinitely many solutions in integer polynomials P (X) of degree at
most n. Furthermore, we denote by w∗n(ξ) the supremum of the exponents
w∗ for which

0 < |ξ − α| < H(α)−w∗−1
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has infinitely many solutions in complex algebraic numbers α of degree at
most n. Throughout the present note, H(P ) stands for the näıve height of
the polynomial P (X) (that is, the maximum of the absolute values of its
coefficients) and H(α) stands for the näıve height of α (that is, the näıve
height of its minimal defining polynomial over Z). The functions wn and
w∗n have been introduced in 1932 by Mahler [7] and in 1939 by Koksma

[6], respectively, in order to classify the set of complex numbers.
Clearly, the functions w1 and w∗1 coincide, and it is quite easy to show

(see e.g. [4, Section 3.4]) that we have

0 ≤ wn(ξ)− w∗n(ξ) ≤ n− 1. (1)

Furthermore, Sprindžuk [11] established that wn(ξ) = w∗n(ξ) = n holds
for all n ≥ 1 and almost all ξ (in the sense of the Lebesgue measure on
the complex plane). In 1976, R. C. Baker [1] proved that there exist real
numbers ξ such that w∗n(ξ) < wn(ξ) for some integer n ≥ 2. More precisely,
he established that for any integer n ≥ 2 the function wn−w∗n can take any
value in the interval [0, (n − 1)/n]. This has been subsequently improved
upon by Bugeaud [2], who showed that, for any integer n ≥ 3, the set of
values taken by the function wn−w∗n contains the interval [0, n/4] (see also
[3] for an improvement when n ≥ 6 is even). Like Baker’s, the approach
followed in [2] originates in two papers by Schmidt [9], [10], where the
existence of T -numbers is established (these are transcendental numbers ξ

for which lim supn→+∞ wn(ξ)/n = +∞ and wn(ξ) is finite for any n ≥ 1).
The main novelty introduced in [2] is the use in the inductive construction
of integer polynomials having two zeros very close to each other.

In the present note, we restrict our attention to the cases n = 2 and
n = 3. We show that, in both cases, inequalities (1) are essentially best
possible. Our proof rests on the construction of families of quadratic and
cubic irreducible, integer polynomials having two real roots very close to
each other. It makes use of a recent result of Evertse [5].
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2. Results

Baker [1] and Bugeaud [2] established that the functions w2 − w∗2
and w3−w∗3 take any value in the intervals [0, 1/2] and [0, 3/4], respectively.
Theorem 1 below extends both results.

Theorem 1. The set of values taken by the function w2−w∗2 contains

the interval [0, 1). The set of values taken by the function w3−w∗3 contains

the interval [0, 2).

In view of (1), Theorem 1 is essentially best possible. Unfortunately,
we are unable to decide whether there exists a real number ξ satisfying
w2(ξ) = w∗2(ξ) + 1 or w3(ξ) = w∗3(ξ) + 2.

We point out that, in the quadratic case, the proof of Theorem 1 is
effective. However, in the cubic case, it is ineffective, since it ultimately
depends on Roth’s Theorem.

The proof of Theorem 1 follows the same general strategy as that of
the main results from [2] and [3]. The key point is the existence of families
of quadratic and cubic irreducible, integer polynomials having two real
roots very close to each other, given by Lemmas 1 and 3 below. Since
these families of polynomials are not parametrized in the same way as the
families of polynomials used in [2], we have to proceed slightly differently
than in [2]. Furthermore, additional complication occurs since our family
of cubic polynomials is not explicitly given.

In order to shorten the length of the present note, we choose not to give
a full proof of Theorem 1. We merely refer the reader to [2] and explain
with full details which modifications are required to adapt the proof of the
main result from [2] in order to get Theorem 1.

Our method also allows us to construct real numbers ξ with prescribed
values for w1(ξ), w2(ξ), w3(ξ), w∗2(ξ) and w∗3(ξ). Suitable modification of
the proof of Theorem 1 yields the following result.

Theorem 2. Let w1, w2, w3, w∗2 and w∗3 be sufficiently large real

numbers satisfying

w1 ≤ w2 ≤ w3, w∗2 ≤ w∗3, 0 ≤ w2 − w∗2 < 1, and 0 ≤ w3 − w∗3 < 2.

Then, there exists a real number ξ with

wi(ξ) = wi (i = 1, 2, 3) and w∗i (ξ) = w∗i (i = 2, 3).
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Theorem 2 provides a new contribution to the resolution of Problem 1
from [4]. We omit its proof, which does not require any new idea (see
Theorem 2 from [2]).

3. Auxiliary results

Throughout this Section, we write A ¿ B if there exists an absolute
positive constant c such that |A| < cB, and we write A ³ B if both A ¿ B

and B ¿ A hold.
Let n ≥ 2 be an integer and P (X) be an integer polynomial of degree n

without multiple roots. Denote by γ1, . . . , γn the roots of P (X). It is well-
known (see e.g. [5]) that there exists a positive constant c(n), depending
only on n, such that for any subset Σ of {1, . . . , n} of cardinality |Σ| ≥ 2
we have ∏

{i,j}⊂Σ

|γi − γj | ≥ c(n)H(P )1−n. (2)

This estimate is best possible when |Σ| = n (see e.g. Theorem 1.2 from
[5]) and for |Σ| = 2 and n = 3 (see [8]). Namely, let (pm/qm)m≥1 denote
the sequence of convergents to

√
2. The integer polynomial Pm(X) :=

(X2 − 2)(qmX − pm) has two roots γ1 =
√

2 and γ2 = pm/qm satisfying

|γ1 − γ2| ³ 1
H(Pm)2

.

Notice, however, that Pm(X) is reducible over Z. The same idea can be
used to prove that (2) is best possible for any n ≥ 4 and |Σ| = n− 1 or n.
It suffices to consider the polynomials

(X2 − 2)(qmX − pm) . . . (qm+n−3X − pm+n−3)

and
(qmX − pm) . . . (qm+n−1X − pm+n−1).

We point out that the roots of the polynomials from the above families are
uniformly bounded (unlike in the construction given in [5]).

When |Σ| = 2, Lemma 1 and Lemma 2 below show that (2) is es-
sentially best possible for n = 2 and n = 3, respectively, under the extra
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assumption that P (X) is irreducible and has only real roots. Presumably,
Lemma 1 is not new. However, we were unable to find it in the literature.

Lemma 1. Let (a, b) with a and b positive integers be a solution to

the Pellian equation X2 − 8Y 2 = 17. Then the roots γ1 and γ2 of the

polynomial Pa,b(X) := bX2 − aX + 2b satisfy

|γ1 − γ2| ³ 1
H(Pa,b)

.

Proof. This is an easy verification. ¤

Lemma 1 allows us to construct explicitly a family of quartic polyno-
mials without rational roots having three roots very close to each other.
Indeed, for a and b as in Lemma 1, set

Ra,b(X) = (X2 − 2)(bX2 − aX + 2b).

The roots of Ra,b(X) are

γ1 =
√

2, γ2 = −
√

2, γ3 =
√

2

√
1 +

17
8b2

+
√

17
2b

, and

γ4 =
√

2

√
1 +

17
8b2

−
√

17
2b

.

It is easy to check that

|γ1 − γ3| · |γ1 − γ4| · |γ3 − γ4| ³ 1
H(Ra,b)3

,

showing that (2) is best possible for n = 4 and |Σ| = 3. This construction
can be extended to any degree. Indeed, let (a1, b1), . . . , (a`, b`) be consec-
utive solutions to the Pellian equation X2 − 8Y 2 = 17. Let p/q denote a
convergent to

√
2 with p ³ √

a1. By considering the polynomials

(X2 − 2)(b1X
2 − a1X + 2b1) . . . (b`X

2 − a`X + 2b`)

and

(qX − p)(X2 − 2)(b1X
2 − a1X + 2b1) . . . (b`X

2 − a`X + 2b`),

one sees again that (2) is best possible for any integer n ≥ 5 and |Σ| = n−1.
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Lemma 2. Let ε be a positive real number. Then, there exists a cubic

integer, primitive, irreducible polynomial P (X) = a(X − γ1)(X − γ2)×
(X − γ3) with a > 0, of arbitrarily large height, satisfying

1
H(P )2

¿ |γ1 − γ2| ¿ 1
H(P )2−ε

,

a À H(P )1−ε and |γ1|, |γ2|, |γ3| ¿ H(P )ε.

Proof. This is established with slightly different notation in the
‘Proof of part (i) of Theorems 1.1 and 1.2’ of Evertse [5]. An easy compu-
tation gives the upper bound for the |γi|’s and the lower bound for a. ¤

We point out that the proof of Lemma 2 ultimately depends on Roth’s
Theorem, hence, it is of an ineffective nature.

Incidentally, Lemmas 1 and 2 imply that Lemma A.8 from [4] is best
possible for n = 2 and n = 3, as far as the dependence on the height of
the polynomial is concerned.

For the proof of Theorem 1, we need the following consequence of
Lemma 2.

Lemma 3. There exist a sequence (Pm(X))m≥1 of primitive, irre-

ducible, integer, cubic polynomials Pm(X) = am(X−γm)(X−γσ
m)(X−γτ

m)
with real roots, a strictly decreasing sequence (εm)m≥1 of positive real num-

bers, two sequences (ηm)m≥1 and (η′m)m≥1 of positive real numbers such

that am > 0, H(Pm+1) > H(Pm), ηm ≤ εm, η′m ≤ εm,

am |γm − γσ
m| · |γm − γτ

m| = H(Pm)−1+ηm , am = H(Pm)1−η′m

and

|γm|, |γσ
m|, |γτ

m| ≤ H(Pm)εm ,

for any m ≥ 1.

Proof. This follows from Lemma 2 combined with the well-known
upper bound am|γm − γτ

m| ¿ H(Pm). ¤

We conclude this Section with an easy (but useful) lemma.

Lemma 4. Let n be a positive integer and let g be a prime number

with g > n. Let P (X) be a primitive, integer polynomial of degree n. If g

does not divide the leading coefficient of P (X), then there is no integer c

such that g divides each of P (c), P (c + 1), . . . , P (c + n).
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Proof. This is a straightforward extension of Lemma 4 of Baker [1].
¤

4. Proof of Theorem 1

Let n be 2 or 3. Let µ be a positive real number. Throughout this
Section, we write A ¿ B if there exists a positive constant c(µ), depending
only on µ, such that |A| < c(µ)B, and we write A ³ B if both A ¿ B and
B ¿ A hold.

Our aim is to construct inductively a converging sequence (ξj)j≥1 of
real algebraic numbers of degree n. As in [2], the ξj ’s are of the shape

ξj =
cj + γj

gj
,

where gj is a prime number, cj a positive integer, and γj a suitable real
algebraic number of degree n. More precisely, we have to establish the
following proposition.

Proposition 1. Let χ be a sufficiently large real number. Let (νj)j≥1

be a sequence of real numbers≥ 2. Then, there exist a positive real number

λ < 1/2, totally real algebraic numbers γ1, γ2, . . . of degree n, prime

numbers g1 ≥ 11, g2, . . . and integers c1, c2, . . . such that the following

conditions are satisfied:

(Ij) gj does not divide the norm of cj + γj (j ≥ 1).

(II1) ξ1 = (c1 + γ1)/g1 ∈ ]1, 2[ .

(IIj) ξj = (cj + γj)/gj belongs to the interval Ij−1 defined by

ξj−1 +
1
2
g
−νj−1

j−1 < x < ξj−1 +
3
4
g
−νj−1

j−1 (j ≥ 2).

(III1) |ξ1 − α| ≥ 2λH(α)−χ

for any algebraic number α 6= ξ1 of degree ≤ n.

(IIIj) |ξj − α| ≥ λH(α)−χ

for any algebraic number α /∈ {ξ1, . . . , ξj} of degree ≤ n (j ≥ 2).
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In addition to (Ij) to (IIIj), we also require that γj , gj and µ are
strongly connected. In [2] and [3], the auxiliary algebraic numbers γj are
given in terms of the parameter µ. Here, we proceed alternatively: the
γj ’s will be roots of polynomials given by Lemmas 1 and 3, and gj will
be defined in terms of γj and µ. This is slightly more technical than in
the previous papers. The reason for that is that we have at our disposal
sets of polynomials parametrized in a different way. Furthermore, in [2]
and [3], the sequence (νj)j≥1 is assumed to be constant. However, what is
really required in the proof is that the sequence (gνj

j )j≥1 is increasing. In
the sequel, (νj)j≥1 will be constant in the case n = 2, but it is crucial to
allow it to vary when dealing with the case n = 3.

Let Pj(X) denote the minimal polynomial of γj . The only aim of
Condition (Ij) is to ensure that the polynomial Qj(X) := Pj(gjX − cj)
is primitive. At this point, we use Lemma 4. This is the reason why we
impose to the gj ’s to be prime numbers.

Consider first the case n = 2. Let ∆ be real with 1/2 < ∆ < 1, and
set µ = (2∆ − 1)/(1 − ∆). Observe that 0 < µ < +∞. Let (ãm, b̃m),
m ≥ 1, be the sequence of all positive solutions to the Pellian equation
X2 − 8Y 2 = 17 numbered such that (ã1, b̃1) = (5, 1) and ãm+1 > ãm for
any positive integer m.

For any sufficiently large m, let g̃m be a prime number with

g̃m ³ ã1/µ
m ³ b̃1/µ

m and gcd(g̃m, b̃m) = 1, (3)

and denote by γ̃m the largest root of the polynomial P̃m(X) := b̃mX2 −
ãmX + 2b̃m. The existence of g̃m is a consequence of Bertrand’s Postulate
and the fact that b̃m is divisible by at most [µ] + 1 distinct prime numbers
of size ³ b̃

1/µ
m . Observe that we have 0 < γ̃m < 5. Now, we show how to

extract from ((g̃m, γ̃m))m≥1 a suitable subsequence ((gj , γj))j≥1.
Going through the proof of Theorem 3 from [2], we see that, in order

to satisfy conditions (IIj) and (IIIj), we ‘only’ need to take, at each step,
gj+1 sufficiently large compared with gj . Since (g̃m)m≥1 tends to infinity,
this can easily be done. One should, however, observe that inequalities (8)
from [2] do not hold anymore, since H(γj) can be large compared with gj .
The only consequence of that is that χ must be large (a lower bound for it
can be expressed in terms of µ, however, for sake of simplicity, we do not
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give details). In view of conditions (IIj) and since the γj ’s are uniformly
bounded, the integers cj and gj are of comparable size.

It remains for us to deal with conditions (Ij). The minimal defining
polynomial of ξj is

Qj(X) := Pj(gjX − cj) = bjg
2
j X

2 − (4bjcj + aj)gjX + 2bjc
2
j + 2bj + ajcj ,

and Lemma 4 ensures that there are many suitable choices for cj (we
should, however, impose that gj does not divide cj) such that Qj(X) is
primitive. Combined with (3), this shows that

H(Qj) ³ H(ξj) ³ g2+µ
j . (4)

Let w∗2 and χ be sufficiently large real numbers with χ < w∗2 + 1. Set
νj = (w∗2 + 1)(2 + µ) for any j ≥ 1. To summarize, we have explained how
to construct inductively a sequence of quadratic numbers (ξj)j≥1 satisfying
the conclusion of Proposition 1. It converges to a limit that we denote by ξ.
Since for any j ≥ 1 we have

g
−νj

j /2 ≤ |ξ − ξj | ≤ g
−νj

j , (5)

we deduce from (4) that

|ξ − ξj | ³ H(ξj)−νj/(2+µ) ³ H(ξj)−w∗2−1. (6)

Combined with (IIIj) and our choice of χ, this proves that w∗2(ξ) = w∗2.
Denoting by ξσ

j the conjugate of ξj and by γσ
j the one of γj , we get

from (3)–(6) and Lemma 1 that

|Qj(ξ)| = bjg
2
j · |ξ − ξj | · |ξ − ξσ

j |

³ g2+µ
j ·

(
ξ − cj + γj

gj

) (
ξ − cj + γσ

j

gj

)

³ g2+µ
j ·

(
ξ − cj + γj

gj

) (
ξj −

cj + γσ
j

gj

)

³ g2+µ
j ·

(
ξ − cj + γj

gj

) (
γj − γσ

j

gj

)

³ gj ·H(ξj)−w∗2−1 ³ H(ξj)−w∗2−1+1/(2+µ).
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Consequently, we obtain

w2(ξ) ≥ w∗2(ξ) + 1− 1
2 + µ

= w∗2(ξ) + ∆, (7)

by the definition of µ. The fact that we have indeed an equality in (7) can
be proved exactly as in [1] or [2].

Consider now the case n = 3. Let ∆ be a real number with 2/3 <

∆ < 2, and set µ = (3∆− 2)/(2−∆). Observe that 0 < µ < +∞. Let w∗3
and χ be sufficiently large real numbers with χ < w∗3 + 1. Let P (X) be a
primitive, irreducible, integer polynomial belonging to the sequence given
by Lemma 3 (we drop the index j). Denote by a > 0 its leading coefficient
and by γ any one of its roots. Let ε, η, and η′ be the positive real numbers
associated to P (X) as in Lemma 3.

Our first aim is to construct a suitable prime number g and a suitable
integer c such that the polynomial Q(X) = P (gX−c) is primitive. Observe
that the leading coefficient of Q(X) is ag3 = H(P )1−η′g3. If ε is sufficiently
small, then there exists a real number g0 satisfying

g0H(P )−1+η =
(
H(P )1−η′ g3

0

)(1−µ)/(3+µ)
.

Furthermore, by selecting ε small enough (this means, by taking, if needed,
another polynomial P (X) in the family given by Lemma 3), g0 can be made
arbitrarily large and we can, in addition, ensure that g0 À H(P )2ε. This
implies that |γ| ≤ g

1/2
0 and H(P ([g0]X − c)) = a[g0]3, since a À H(P )1−ε.

Using Bertrand’s Postulate as in the case n = 2, we find a prime number
g which does not divide a and satisfies g ³ g0. Consequently, we get

gH(P )−1+η ³ (
H(P )1−η′ g3

)(1−µ)/(3+µ) ³ H(Q)(1−µ)/(3+µ)

and H(Q) ³ H(P )1−η′g3.
Before going on, we point out that if it would have been possible to

take η = η′ = 0 (this happens in the case n = 2), then we would have get
g ³ H(P )1/µ and H(Q) ³ g3+µ.

Consequently, using a subsequence of the sequence of polynomials
given by Lemma 3, we construct a sequence of quadruples
((gj , cj , γj , νj))j≥1 with gj+1 sufficiently large compared with gj for any
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j ≥ 1, and such that

gjH(Pj)−1+ηj ³ H(Qj)(1−µ)/(3+µ),

|γj | ≤ g
1/2
j and H(Qj)w∗3+1 = gνj ,

(8)

where Pj(X) is the minimal defining polynomial of γj and Qj(X) =
Pj(gjX − cj). Observe that gj and cj are of comparable size, since |γj | ≤
g
1/2
j . As in the case n = 2, we use Lemma 4 to deal with Condition (Ij).

We skip the details.
To summarize, we have constructed inductively a sequence of cubic

numbers (ξj)j≥1 satisfying the conclusion of Proposition 1. It converges to
a limit that we denote by ξ. Since for any j ≥ 1 we have

g
−νj

j /2 ≤ |ξ − ξj | ≤ g
−νj

j , (9)

we deduce from (8) that

|ξ − ξj | ³ H(ξj)−w∗3−1. (10)

Denoting by γσ
j , γτ

j , ξσ
j , and ξτ

j the conjugates of γj and ξj , we infer from
(8)–(10) and Lemma 3 that

|Qj(ξ)| = ajg
3
j · |ξ − ξj | · |ξ − ξσ

j | · |ξ − ξτ
j |

³ ajg
3
j ·

(
ξ − cj + γj

gj

) (
ξj −

cj + γσ
j

gj

)(
ξj −

cj + γτ
j

gj

)

³ ajg
3
j ·

(
ξ − cj + γj

gj

) (
γj − γσ

j

gj

)(
γj − γτ

j

gj

)

³ gj ·H(ξj)−w∗3−1 ·H(Pj)−1+ηj ³ H(ξj)−w∗3−1+(1−µ)/(3+µ).

Consequently, we obtain

w3(ξ) ≥ w∗3(ξ) + 1− 1− µ

3 + µ
= w∗3(ξ) + ∆, (11)

by the definition of µ. The fact that we have indeed an equality in (11)
can be proved exactly as in [1] or [2].

Thus, we have established that the set of values taken by w2−w∗2 (resp.
by w3−w∗3) includes the interval (1/2, 1) (resp. the interval (2/3, 2)). Com-
bined with the results from [1] and [2] recalled just before the statement
of Theorem 1, this completes the proof of our theorem. ¤



316 Y. Bugeaud : Mahler’s classification of numbers compared. . .

Acknowledgements. The author would like to thank Maurice Mi-

gnotte for useful discussion.

References

[1] R. C. Baker, On approximation with algebraic numbers of bounded degree, Math-
ematika 23 (1976), 18–31.

[2] Y. Bugeaud, Mahler’s classification of numbers compared with Koksma’s, Acta
Arith. 110 (2003), 89–105.

[3] Y. Bugeaud, Mahler’s classification of numbers compared with Koksma’s, II,
Preprint.

[4] Y. Bugeaud, Approximation by algebraic numbers, Cambridge Tracts in Mathe-
matics 160, Cambridge, 2004.

[5] J.-H. Evertse, Distances between the conjugates of an algebraic number, Publ.
Math. Debrecen 65 (2004), 323–340.
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