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Power classes of recurrence sequences
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To the memory of Professor Béla Brindza

Abstract. A linear recursive sequence G of order k is defined by the inte-
ger initial terms Gg, Gy, ..., Gk_1, integer constants Aj, As, ..., Ax and by the
recursion G,, = A1Gp_1 + -+ + AG,_ for kK < n. In the case k = 2, Gy = 0,
G1 = 1 (when we denote the sequence by R) it is known that there are only finitely
many perfect powers in such sequences. Ribenboim and McDaniel investigated
the so called square-classes. We say that R,, and R, is the same square-class if
R, R, = t? for some integer t. They proved that every square-class is finite. For
a general sequence we investigate a similar problem, we show that the equation
GLGI™" = w?, under some restrictions, has no (z,y,w,q) solutions if ¢ is large
enough depending on some parameters.

Let R = R(A, B, Ry, R1) be a second order linear recursive sequence
defined by

R,=AR,_1+ BR,,» (n>1),
where A, B, Ry and R; are fixed rational integers. In the sequel we assume

that the sequence is not a degenerate one, i.e. a/[3 is not a root of unity,
where o and 3 denote the roots of the polynomial 22 — Az — B.
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The special cases R(1,1,0,1) and R(2,1,0,1) of the sequence R is
called Fibonacci and Pell sequence, respectively.

Many results are known about relationship of the sequences R and pure
powers. For the Fibonacci sequence COHN [2] and WYLIE [24] showed that
a Fibonacci number F), is a square only when n = 0,1,2 or 12. PETHO
[13] and furthermore LONDON and FINKELSTEIN [10], [11] proved that Fj,
is full cube only if n = 0,1,2 or 6. From a result of LIUNGGREN [9] it
follows that a Pell number is a square only if n = 0,1 or 7 and PETHO [13]
showed that these are the only perfect powers in the Pell sequence. Similar,
but more general results was showed by MCDANIEL and RIBENBOIM [12],
ROBBINS [20] [21], ConN [3]-[5] and PETHO [16]. SHOREY and STEWART
[22] proved that any non degenerate binary recurrence sequence contains
only finitely many pure powers which can be effectively determined. This
results follows also from a result of PETHO [15].

Another type of problems was studied by Ribenboim and McDaniel.
For a sequence R we say that the terms R,,, R, are in the same square-
class if there exist non zero integers x, y such that

Rma? = Ryy?.

or equivalently
R, R, =t

where t is a positive rational integer.

A square-class is called trivial if it contains only one element. RIBEN-
BIOM [17] proved that in the Fibonacci sequence the square-class of a
Fibonacci number F, is trivial, if m # 1,2,3,6 or 12 and for the Lucas
sequence L(1,1,2,1) the square-class of a Lucas number L,, is trivial if
m # 0, 1,3 or 6. For more general sequences R(A, B,0,1), with (4, B) =1,
RIBENBOIM and MCDANIEL [18] obtained that each square class is finite
and its elements can be effectively computable (see also RIBENBOIM [19]).

Further on we shall study more general recursive sequences.

Let G = G(Ay,..., A, Go,...,Gr_1) be a k'™ order linear recursive
sequence of rational integers defined by

G, =A1Gp_ 1+ AsGp_o+ -+ ALG_i (n>k—1),

where Ay,..., A and Go,...,Gr_1 are not all zero integers. Denote by
a = aj,,...,a, the distinct zeros of the polynomial ¥ — AjzF—1 —
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ApxF—2—...— Aj. Assume that o, as, .. ., o has multiplicity 1,mo, ..., ms
respectively and |a| > |a;| for i = 2,...,s. In this case, as it is known, the
terms of the sequence can be written in the form

Gn =ad™ +ro(n)ay + - +rs(n)al (n>0), (1)

where r;’s (i = 2,...,s) are polynomials of degree m; — 1 and the coeffi-
cients of the polynomials and a are elements of the algebraic number field
Q(ay ag, ..., as). SHOREY and STEWART [22] prowed that the sequence G
does not contain ¢! powers if ¢ is large enough. This result follows also
from [7] and [23], where more general theorems was showed.

Kiss [6] generalize the square-class notion of Ribenboim and Mec-
Daniel. Let g and r be fixed natural numbers with the condition 0 < r < ¢
and ¢ > 2. For a sequence G we say that the terms G,, and G,, are in the
same (q,r) power-class if there is an integer w such that

T QAT —
G, GE" = wi.

It can be easily seen that this relation is an equivalence relation; it
is reflexive, symmetric and transitive. In the above mentioned paper Kiss
proved that the equation

G, GI™" = w

has no solutions z, w, ¢, r if z > n and ¢ > qo(n, G). In the followings we
shall show a more general result.

Theorem. Let G be a k! order linear recursive sequence satisfying

the above conditions. o« ¢ Z. Moreover we assume that + < ; < K,

(¢,7) = 1 and 6qg < r < q, where K > 1 and 0 < 6 < %areﬁxed
numbers. Then there exists a number qq, depending on G, K, §, such that

the equation
GLGIT" = w1 (2)

in positive integer x, y, w, ¢q, r has no solution with x # y, w > 1 and
q > qo-
We use the following results in the proof.

Lemma 1 (A. BAKER [1)). Let 71,...,7, be non-zero algebraic num-
bers. Let My,..., M, be upper bounds for the heights of v1,...,Vy, re-
spectively. We assume that M, is at least 4. Further let by,...,b,_1 be
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rational integers with absolute values at most B and let b, be a non-zero
rational integer with absolute value at most B'. We assume that B’ is at
least three. Let L defined by

L=20b 10g’y1 + - +bfu10g’7v7

where the logarithms are assumed to have their principal values. If L # 0,
then
|L| > exp(—C(log B'log M,, + B/B")),

where C is an effectively computable positive number depending only on
the numbers My, ..., M,_1, and v (see Theorem 1 of [1] with § =1/B’).

Lemma 2 (P. Kiss [8]). Let G be a linear recurrence defined above
satisfying the condition G,, # aa™ for n > ngy If

GLGY =

for positive integers x,y,q and r with the condition (q,r) =1 and y < ny,
then q < q1, where q1 is a constant depending on G, ng and ny, but does
not depend on r.

PROOF. Proof the Theorem Lemma 2 implies the assertion of the The-
orem if x or y is bounded. We can assume, without loss of generality, that
the terms G,, are positive and the sequence is increasing. Since r and ¢ —17
can be inverted in the Theorem and the symmetry is valid we can assume
that © > y. Let c1,c2,... be positive numbers which depend on G, K
and . Because of (1), G, can be written in the form:

Gy = aa™ <1 + 17’2(71) <al2> + 17’3(71) <a?’>
a o a a

. 2rs(n) (a>n) — aa™(1 + n)

(07

3)

where lim,,_,o €5, = 0 since |o;| < |a for 2 <i <.
Let x, y, w, q, r be positive integers satisfying (2) with the above
conditions. From (2)we get the equation
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By x > y it is obvious that G% > w? and so G, > w. Using the previous
inequality and (3) we have logw < ¢jz.
Similarly it follows that Gf < w? and logw > coy > c3x. In this way
we obtain that
czx < logw < cyz. (4)

The equation (2) can be written in the form
G \" w\?

Te) (2. 5

() - (&) ©

Since (g,r) = 1 we obtain from (5) that

where

Using equations (3) and (6) we get

a’ Yl 1+¢gy
vl l4e,

(8)

Recalling that |log(1 + z)| < 2 and |log(1 — z)| < 2z for 0 < 2 < 1 and
using our assumption that % < K we find that

1
’ 7 12« < exp(—c4x). 9)
if x, y are sufficiently large.
Put
=Y ,q
L= loga | = ‘(ac—y)loga—qlogE
v4 z

and employ the Lemma withv =2, B’ = ¢, B=2—y and My = wr since
it follows from (7) that ¢ > 1 and v = wr.
We suppose that
()
z
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moreover, we may assume that o ¢ Z. Let o/ # « be any conjugate of «
and let ¢ be an automorphism of Q with p(a) = o’. Then |o/| < |a/, since
« is a dominating root. We have

a7V = p(a™Y).

Which is obviously impossible.
Hence L # 0 since x # y. Thus, by the lemma

L > exp <—C5 <10gq10g wr + H)) . (10)
q

Using (4), (9) and (10) we get the inequalities

x€r —

C4x<c—510gqlogw+65 y<cjlogqlogijcGf
r r q

(11)

log w

<C—510gqlogw+07 <C—810gqlogw.
r r

By (4) and (11) we obtain
corlogw < log qlogw

and by r > dq we have

c10q < logg,
which is impossible if ¢ > qo. (Il

Remark. In the theorem we suppose that « ¢ Z. This condition is
necessary. Imre Ruzsa gave the following example. If

Gan1 =271 +1, Gop =27" 427,

then the characteristic polynomial is (z — 2)(z? — 2)(2? — 1) and o = 2.

We have
G4n7 2

—_ 227171
G2n—1

that is there are infinitely many ¢-th power in this case.

ACKNOWLEDGEMENTS. The authors are grateful to Professors BELA
BRINDzA, PETER Kiss and IMRE RUZSA their valuable remarks.



1]
2]
3]

[4]

[10]
[11]
[12]
[13]
[14]
[15]
[16]
17]
18]
[19]
[20]

(21]

Power classes of recurrence sequences 427

References

A. BAKER, A sharpening of the bounds for linear forms in logarithms II, Acta
Arithm. 24 (1973), 33-36.

J. H. E. CoHN, On square Fibonacci numbers, J. London Math. Soc. 39 (1964),
537-540.

J. H. E. CoHnN, Squares in some recurrent sequences, Pacific J. Math. 41 (1972),
631-646.

J. H. E. ConN, Eight Diophantine equations, Proc. London Math. Soc. 16 (1966),
153-166.

J. H. E. ConN, Five Diophatine equations, Math. Scand. 21 (1967), 61-70.

P. Kiss, Power classes in recurrence sequences, Acta Acad. Paed. Agriensis 22
(1994), 55-60.

P. Kiss, Differences of the terms of linear recurrences, Studia Sci. Math. Hungar.
20 (1985), 285-293.

P. Kiss, On a problem concerning perfect powers in linear recurrences, Acta Acad.
Paed. Agriensis, sect. Math. 26 (1999), 25-30.

W. LIUNGGREN, Zur Theorie der Gleichung z> + 1 = Dy*, Arh. Norske Vid Akad.
Oslo 5 (1942).

J. LONDON and R. FINKELSTEIN, On Fibonacci and Lucas numbers which are
perfect powers, Fibonacci Quart. 7 (1969), 476-481, 487, Frrata ibid 8 (1970) 248.
J. LonpoN and R. FINKELSTEIN, On Mordell’s equation 3°> — k = z*, Bowling
Green University Press, 1973.

W. L. McDANIEL and P. RIBENBOIM, Squares and double-squares in Lucas se-
quences, C. R. Math. Acad. Sci. Soc. R. Canada 14 (1992), 104-108.

A. PETHO, Full cubes in the Fibonacci sequence, Publ. Math. Debrecen 30 (1983),
117-127.

A. PETHO, The Pell sequence contains only trivial perfect powers, all Coll. Math.
Soc. J. Bolyai, 60 sets, Graphs and Numbers, Budapest, 1991, 561-568.

A. PETHO, Perfect powers in second order linear recurrences, J. Number Theory
15 (1982), 5-13.

A. PETHO, Perfect powers in second order recurrences, Topics in Classical Number
Theory, Akadémiai Kiadd, Budapest, 1981, 1217-1227.

P. RIBENBOIM, Square classes of Fibonacci and Lucas numbers, Portugaliae Math.
46 (1989), 159-175.

P. RiBENBOIM and W. L. McDANIEL, Square classes of Fibonacci and Lucas se-
quences, Portugaliae Math. 48 (1991), 469-473.

P. RIBENBOIM, Square classes of (a" — 1)/(a — 1) and a™ + 1, Sichuan Dazue
Xunebar. 26 (1989), 196-199.

N. RoBBINS, On Fibonacci numbers of the form pz?, where p is prime, Fibonacci
Quart. 21 (1983), 266-271.

N. RoBBINS, On Pell numbers of the form PX?, where P is prime, all, Fibonacci
Quart. 22 (1984), 340-348.



428 K. Liptai and L. Szalay : Power classes of recurrence sequences

[22] T. N. SHOREY and C. L. STEWART, On the Diophantine equation
az’t + bz'y + cy? = d and pure powers in recurrence sequences, Math. Scand. 52
(1983), 24-36.

[23] T. N. SHOREY and C. L. STEWART, Pure powers in recurrence sequences and some
related Diophantine equations, J. Number Theory 27 (1987), 324-352.

[24] O. WYLIE, In the Fibonacci series Fy = 1,F> = 1, F,,11 = F, + F,_1 the first,
second and twelvth terms are squares, Amer. Math. Monthly 71 (1964), 220-222.

KALMAN LIPTAI

DEPARTMET OF MATHEMATICS
ESTERHAZY KAROLY COLLEGE
LEANYKA UT 4, 3300 EGER
HUNGARY

E-mail: liptaik@gemini.ektf.hu

LASZLO SZALAY

INSTITUTE OF MATHEMATICS AND STATISTICS
UNIVERSITY OF WEST HUNGARY

ERZSEBET U. 9, H-9400, SOPRON
HUNGARY

E-mail: laszalay@ktk.nyme.hu

(Received February 7, 2004)



