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Moment functions on polynomial hypergroups
in several variables
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Dedicated to the memory of Béla Brindza

Abstract. In a former paper (see [7]) we described the general form of gen-
eralized moment functions on polynomial hypergroups in a single variable. Here
we extend the results to polynomial hypergroups in several variables.

1. Polynomial hypergroups in several variables

The basic concepts of hypergroups, in particular polynomial hyper-
groups in several variables can be found in [5] and [2]. The volume [8]
contains expository papers on hypergroups, in particular, [4] describes a
method for finding moment functions on hypergroups, which is of special
interest from the point of view of the present work. The role of polynomial
hypergroups in the theory of orthogonal polynomials is studied in [3], [6],
[9]. The role of moment functions in the probability theory on hypergroups
is presented in [10] and [11]. The single variable case of moment functions
on polynomial hypergroups has been considered in [7]. Here we summarize
the necessary facts.
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Let K be a countable set equipped with the discrete topology and let
d be a positive integer. We consider a set (Qx)x∈K of polynomials in d

complex variables. If for any nonnegative integer n the symbol Kn denotes
the set of all elements x in K for which the degree of Qx is not greater than
n, then we suppose that the polynomials Qx with x in Kn form a basis for
all polynomials of degree not greater than n. In this case for every x, y

in K the product Qx Qy admits a unique representation

Qx Qy =
∑

w∈K

c(x, y, w)Qw (1)

with some complex numbers c(x, y, w). A hypergroup (K, ∗) is called a
polynomial hypergroup in d variables or d-dimensional polynomial hyper-
group if there exists a family of polynomials (Qx)x∈K in d complex vari-
ables satisfying the above condition and such that the convolution in K is
defined by

δx ∗ δy({w}) = c(x, y, w)

for any x, y, w in K. We say that this polynomial hypergroup is associated
with the family of polynomials (Qx)x∈K .

It is clear that the polynomial hypergroups in one variable, defined
in [7] represent a special class of this concept. The above equation (1) is
a generalization of the linearization formula in [7]. It is obvious that any
sequence (pn)n∈N of polynomials in one variable having the property that
for any nonnegative integer n the degree of pn is exactly n satisfies the
above condition in (1).

By the conditions on the sequence of polynomials (Qx)x∈K it follows
that there is exactly one element x in K for which Qx is a nonzero constant.
It is easy to see that necessarily x = e is the identity of the hypergroup,
and Qe = 1. Sometimes it is convenient to identify the element x in K

with the polynomial Qx. Clearly K contains exactly d nonconstant linear
polynomials which are linearly independent.
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2. Basic functional equations

Let K be a discrete hypergroup with convolution ∗, involution ∨, and
identity e (see [2]). For any y in K let Ty denote the right translation
operator on the space of all complex valued functions on K. We call the
complex valued function a on K additive, if it satisfies

Tya(x) = a(x) + a(y)

for all x, y in K. In more details this means that
∫

K
a(t) d(δx ∗ δy)(t) = a(x) + a(y)

holds for any x, y in K. The complex valued function m on K is called an
exponential, if it is not identically zero, and

Tym(x) = m(x)m(y)

holds for all x, y in K. In other words m satisfies the functional equation
∫

K
m(t) d(δx ∗ δy)(t) = m(x)m(y) .

In general, for Tyf(x) we can use the more suggestive abbreviation f(x∗y).
It is obvious that any linear combination of additive functions is additive
again. However, in contrast with the case of groups, the product of ex-
ponentials is not necessarily an exponential. Obviously a(e) = 0 for any
additive function a, and m(e) = 1 for any exponential m. The set of all
exponential functions on K is called the generalized dual of K.

Moments of probability measures on hypergroups can be introduced
in terms of moment functions. The notion of moment functions has been
formalized in [11] (see also [2]). For any nonnegative integer N the function
ϕ : K → C is called a moment function of order N , if there are complex
valued functions ϕk : K → C for k = 0, 1, . . . , N such that ϕ0 = 1, ϕN = ϕ,
and the binomial functional equation

ϕk(x ∗ y) =
k∑

j=0

(
k

j

)
ϕj(x)ϕk−j(y)
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holds for k = 0, 1, . . . , N and for all x, y in K. In this case we say that
the functions ϕk (k = 0, 1, . . . , N) form a moment sequence of order N .
Hence the study of moment functions on hypergroups leads to the study
of systems of functional equations. An extensive study of these types of
functional equations can be found in [1]. Systems of functional equations
characterizing moment functions and sequences of moment functions are
closely related to exponential functions and additive functions. In partic-
ular, moment functions of order 1 are exactly the additive functions. In
[4] the general form of moment functions of order N = 1 and N = 2 have
been determined in the case of polynomial hypergroups.

We can generalize the concept of moment functions by omitting the
hypothesis ϕ0 = 1. In this case ϕ0 is an exponential function and we say
that ϕ0 generates the generalized moment sequence of order N and ϕk is a
generalized moment function of order k with respect to ϕ0 (k = 0, 1, . . . , N).
For instance, generalized moment functions of order 1 with respect to the
exponential ϕ0 are solutions of the sine functional equation

ϕ1(x ∗ y) = ϕ0(x)ϕ1(y) + ϕ0(y)ϕ1(x)

for any x, y in K.

In [7] the general form of generalized moment functions has been pre-
sented in the case of polynomial hypergroups in a single variable. In this
work we extend those results to polynomial hypergroups in several vari-
ables.

3. Exponential and additive functions on multivariate
polynomial hypergroups

For the description of moment functions on polynomial hypergroups
we shall need the general form of exponential functions. The following
characterization of the exponential functions on K can be found in [2].

Theorem 1. Let K be a d dimensional polynomial hypergroup gen-

erated by the family of polynomials (Qx)x∈K . The function m : K → C is

an exponential if and only if there exists a λ in Cd such that

m(x) = Qx(λ) (2)
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holds for each x in K.

This theorem implies that the generalized dual of the d dimensional
polynomial hypergroup can be identified with Cd (see [2]). Consequently,
every polynomial hypergroup admits a normalization in the sense that
there exists a λ0 in Cd such that Qx(λ0) = 1 holds for any x in K. Indeed,
λ0 is the unique element in Cd which corresponds to the exponential iden-
tically 1. We call λ0 the normalizing point of the hypergroup K. In the
case of the polynomial hypergroups of one variable we studied in [7] the
normalizing point was 1.

The next theorem describes additive functions on multivariate poly-
nomial hypergroups.

Theorem 2. Let K be a d dimensional polynomial hypergroup gen-

erated by the family of polynomials (Qx)x∈K with normalizing point λ0.

The function a : K → C is an additive function if and only if there exist

complex numbers cj for j = 1, 2, . . . , d such that

a(x) =
d∑

i=1

ci∂iQx(λ0) (3)

holds for each x in K.

Proof. By the linearization formula (1)

Qx(λ)Qy(λ) =
∑

w∈K

c(x, y, w)Qw(λ)

holds for any x, y in K and for any λ in Cd. Applying ∂i on both sides of
this equation and then substituting λ = λ0 we have for i = 1, 2, . . . , d

∂iQx(λ0) + ∂iQy(λ0) =
∑

w∈K

c(x, y, w)∂iQw(λ0) ,

which means that the functions x 7→ ∂iQx(λ0) are additive for
i = 1, 2, . . . , d, hence the function a given in (3) is additive for any complex
numbers c1, c2, . . . , cd.

For the converse first we observe that the vectors
(
∂1Qx(λ0), ∂2Qx(λ0), . . . , ∂dQx(λ0)

)
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for x in K1 and x 6= e are linearly independent, because the polynomials
Qx for x in K1 form a basis for the linear polynomials in d variables. This
implies that the system of linear equations

a(x) =
d∑

i=1

ci∂iQx(λ0) (4)

for x in K1 with x 6= e has a unique solution c1, c2, . . . , cd. Then (4)
obviously holds also for x = e. We show by induction on n that (4) holds
for any x in Kn and for any n in N. Supposing that this holds for some n

let x be in Kn+1. We know that Qx has a representation in the form

Qx(λ) =
s∑

j=1

ajQxj (λ)Qyj (λ) (5)

for any λ in Cd with some complex numbers aj and with some xj in K1

and yj in Kn (j = 1, 2, . . . , s), where s is a positive integer, which means
that

δx =
s∑

j=1

ajδxj ∗ δyj

holds. On the other hand, applying ∂i on (5) and substituting λ = λ0 we
have for i = 1, 2, . . . , d

∂iQx(λ0) =
s∑

j=1

aj

(
∂iQxj (λ0) + ∂iQyj (λ0)

)
.

Finally we obtain

a(x) =
∫

K
a dδx =

s∑

j=1

aj

∫

K
a(t) d(δxj ∗ δyj )(t)

=
s∑

j=1

aj

(
a(xj) + a(yj)

)
=

s∑

j=1

aj

d∑

i=1

ci

(
∂iQxj (λ0) + ∂iQyj (λ0)

)

=
d∑

i=1

ci

s∑

j=1

aj

(
∂iQxj (λ0) + ∂iQyj (λ0)

)
=

d∑

i=1

ci∂iQx(λ0) ,

and our theorem is proved. ¤
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4. Moment functions on multivariate
polynomial hypergroups

In this section we generalize the results in [7] by characterizing moment
functions on multivariate polynomial hypergroups. In particular, this is
a solution to the problem raised in [4] about the general form of moment
functions on polynomial hypergroups.

Theorem 3. Let K be a d dimensional polynomial hypergroup gener-

ated by the family of polynomials (Qx)x∈K . The functions ϕ0, ϕ1, . . . , ϕN :
K → C form a generalized moment sequence of order N on K if and only if

ϕk(x) = (Qx ◦ f)(k)(0) (6)

holds for all X in k and for k = 0, 1, . . . , N , where f = (f1, f2, . . . , fd) :
R → Cn and fi : R → C is a polynomial of degree at most N (i =
1, 2, . . . , d).

Proof. Let ϕk denote the function defined by (6) for k = 0, 1, . . . , N

with some function f = (f1, f2, . . . , fd) : R → Cn, where fi : R → C is
any N -times differentiable function (i = 1, 2, . . . , d). By the linearization
formula we have

(Qx ◦ f)(t)(Qy ◦ f)(t) =
∑

w∈K

c(x, y, w)(Qw ◦ f)(t)

for each t in R and for all x, y in K. Differentiating both sides k times
with respect to t and substituting t = 0 we have for k = 0, 1, . . . , N and
for any x, y in K

k∑

j=0

(
k

j

)
ϕj(x)ϕk−j(y) =

k∑

j=0

(
k

j

)
(Qx ◦ f)(j)(0)(Qy ◦ f)(k−j)(0)

=
∑

w∈K

c(x, y, w)(Qw ◦ f)(k)(0)

=
∑

w∈K

c(x, y, w)ϕk(w) = ϕk(x ∗ y) ,

which means that the functions ϕ0, ϕ1, . . . , ϕN : K → C given above form
a generalized moment sequence of order N on K for any complex numbers
ci,j (i = 1, 2, . . . , d; j = 0, 1, . . . , N).
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To prove the converse statement we suppose now that the functions
ϕ0, ϕ1, . . . , ϕN : K → C form a generalized moment sequence of order N

on K. As ϕ0 is an exponential, we have that ϕ0(x) = Qx(λ) holds for each
x in K with some λ in Cd, where λ = (c1,0, c2,0, . . . , cd,0). We have seen in
the proof of the previous theorem, that the vectors

(
∂1Qx(λ), ∂2Qx(λ), . . . , ∂dQx(λ)

)

for x in K1 and x 6= e are linearly independent, consequently, for any fixed
j = 1, 2, . . . , N the system of linear equations

ϕj(x) =
d∑

i=1

ci,j∂iQx(λ)

for x in K1 with x 6= e has a unique solution ci,j (i = 1, 2, . . . , d). Then we
define f = (f1, f2, . . . , fd) by

fi(t) =
N∑

j=0

ci,j

j!
tj

for each t in R and for i = 1, 2, . . . , d. Further let

ψk(x) = ϕk(x)− (Qx ◦ f)(k)(0)

for k = 0, 1, . . . , N and for each x in K. We show that the functions
ψ0, ψ1, . . . , ψN vanish identically on K. For k = 0 we have obviously
ψ0(x) = ϕ0(x)−Qx(f(0)) for all n in N. However, as f(0) = λ, it follows
immediately from the choice of λ that ϕ0(x) = Qx(f(0)), hence ψ0(x) = 0
for each x in K.

From the equation of the moment functions it follows by induction on
k that ϕk(e) = 0 for k = 1, 2, . . . , N , consequently, we have that ψk(e) = 0
for k = 0, 1, . . . , N . On the other hand, for any x in K1 the polynomial
Qx is linear, hence

(Qx ◦ f)(k)(0) =
d∑

i=1

∂iQx(f(0))f (k)
i (0) =

d∑

i=1

∂iQx(λ)ci,k = ϕk(x)

holds for k = 1, 2, . . . , N , whenever x 6= e. This means that ψk(x) = 0 for
any x in K1 and for k = 0, 1, . . . , N .
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Now we proceed by induction. Suppose that we have proved ψk(x) = 0
for k = 0, 1, . . . , N and for any x in Kn and let x be arbitrary in Kn+1. By
the same argument that we used in the proof of the previous theorems we
have that Qx has a representation in the form (5) for all λ in Cd with some
complex numbers aj and with some xj in K1 and yj in Kn (j = 1, 2, . . . , s),
where s is a positive integer, which means that

δx =
s∑

j=1

ajδxj ∗ δyj

holds. Consequently, we have

ϕk(x) =
s∑

j=1

ajϕk(xj ∗ yj)

for k = 1, 2, . . . , N . On the other hand, differentiating (5) k times and
substituting t = 0 we have

(
Qx ◦ f

)(k)(0) =
s∑

j=1

aj

k∑

l=0

(
k

l

)(
Qxj ◦ f

)(l)(0)
(
Qyj ◦ f

)(k−l)(0)

=
s∑

j=1

aj

k∑

l=0

(
k

l

)
ϕl(xj)ϕk−l(yj) =

s∑

j=1

ajϕk(xj ∗ yj) = ϕk(x) ,

which means that ψk(x) = 0 for k = 0, 1, . . . , N . This completes the
proof. ¤
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