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On the diophantine equation Sm(x) = g(y)

By CSABA RAKACZKI (Debrecen)

To the memory of Professor Béla Brindza

Abstract. In this paper we characterize those polynomials g(y) with ratio-
nal coefficients and positive integers m for which 1m + 2m + · · ·+ xm = g(y) has
infinitely many integer solutions. As an application of this result we give an inef-
fective finiteness result concerning equation Sm(x) = F (

(
y
n

)
), where F (y) ∈ Q[y].

1. Introduction

In our paper we study the diophantine equation

Sm(x) = g(y) in positive integers x, y, (1)

where g(y) is a polynomial with rational coefficients, m is a positive integer
and

Sm(x) = 1m + 2m + · · ·+ xm.

In 1956, Schäffer [18] established an ineffective finiteness theorem for the
number of solutions of (1) in the special case when g(y) = yn. An effective
version of this result was proved by Győry, Tijdeman and Voorhoeve
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[11] who investigated Schäffer’s equation in the more general case when
the exponent n is also unknown. Later, several generalizations, extensions
and related results have been obtained see e.g. [6]–[9], [13], [16], [19]–[22]
and the references given there. Recently, Jacobson, Pintér and Walsh

[12] and Bennett, Győry and Pintér [1] resolved Schäffer’s equation for
n = 2, m even with m ≤ 58, and for arbitrary n and m ≤ 11, respectively.
For a survey of these results we refer to [10].

The main purpose of the present paper is to characterize those integers
m and polynomials g(y) ∈ Q[y] for which (1) may have infinitely many in-
teger solutions x, y. Further, we give for each type of these pairs (m, g(y))
an equation of the form (1) which has infinitely many solutions (cf. The-
orem 1). In our Theorem 2 we give an application of Theorem 1, and we
characterize those positive integers m and polynomials F (x) with integer
coefficients and with degree one or odd prime for which equation (2) has
only finitely many integer solutions. Our results are ineffective because the
proof is based upon an ineffective finiteness criterion of Bilu and Tichy

[4] on diophantine equations of the form f(x) = g(y). We mention that
it is complicated to apply the criterion of [4] to special equations. In our
proofs, we shall also need some results on Bernoulli polynomials (cf. [3])
and Dickson polynomials (cf. [2]).

2. New results

To present our results we define special pairs (m, g(x)). In what fol-
lows, let δ(x) ∈ Q[x] be a linear polynomial, and q(x) ∈ Q[x] a non-zero
polynomial. As is known Sm(x) is a polynomial from Q[x] with degree
m + 1 (cf. (4) below). Further, for m odd, Sm(x) can be written in the
form ψm

(
(x + 1/2)2

)
with an appropriate polynomial ψm(x) ∈ Q[x]. Now

define special pairs (m, g(x)) as follows:

• Special pair of type I: (m,Sm(q(x))), where q(x) is not constant.

• Special pair of type II: m is odd and g(x) = ψm(δ(x)q(x)2).

• Special pair of type III: m is odd and g(x) = ψm(cδ(x)t), where c ∈
Q \ {0}, t ≥ 3 is an odd integer.
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• Special pair of type IV: m is odd and g(x) = ψm((aδ(x)2 + b)q(x)2),
where a, b ∈ Q \ {0}.

• Special pair of type V: m is odd and g(x) = ψm(q(x)2).
• Special pair of type VI: m = 3 and g(x) = δ(x)q(x)2.
• Special pair of type VII: m = 3 and g(x) = q(x)2.

Theorem 1. Let m be a positive integer and g(x) ∈ Q[x] be a poly-

nomial of degree greater than 2. Then equation (1) has only finitely many

integer solutions x, y, unless (m, g(x)) is a special pair. Further, for each

type of special pairs, the polynomials δ(x), q(x) and the numbers a, b, c,

t can be chosen so that for the corresponding g(x) and for every odd m,

equation (1) has infinitely many integer solutions x, y.

In 2002 Bilu et al. [3] proved that the equation Sm(x) = y(y − 1)
. . . (y − (n − 1)) has, at most, finitely many solutions in rational integers
x, y for m ≥ 1, n ≥ 2 and (m, n) 6= (1, 2). There proof is based upon the
decomposition of Bernoulli polynomials and Theorem A. In our second
theorem we extend their result and give a general finiteness statement for
equation (2).

Theorem 2. Let F (x) ∈ Q[x] be a polynomial of degree p with p = 1
or p ≥ 3 prime. Then the equation

Sm(x) = F

((
y

n

))
in integers x ≥ 1, y ≥ n, (2)

where n > 2 if p = 1, has only finitely many solutions apart from the cases

when

• deg F (x) = 1 and (m,n) ∈ {(1, 4), (2, 3), (3, 4)},
• F (x) = Sm(δ(x)), where m = p− 1 and δ(x) ∈ Q[x] is linear,

• F (x) = ψm(δ(x)) and n = 1, 2 or 4, where δ(x) ∈ Q[x] is linear,

• m = 3, F (x) = δ(x)q(x)2 and n = 1, 2 or 4, where δ(x) ∈ Q[x] is

linear.

In the proof of Theorem 2 we shall give in each exceptional case,
apart from the last one, a concrete equation which has infinitely many
integer solutions x, y. It possible that in the last exceptional case there
are equations with infinitely many integer solutions but we are not able to
find such an equation.
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3. Auxiliary results

To formulate Bilu and Tichy’s explicit finiteness criterion for diophan-
tine equations of the form f(x) = g(y), we have to define five kinds of
‘standard pairs’ of polynomials. Let a, b be non-zero rational numbers.

A standard pair of first kind is (xt, (axrq(x)t)) or switched
((axrq(x)t, xt)), where 0 ≤ r < t, (r, t) = 1 and r + deg q(x) > 0.

A standard pair of second kind is
(
x2, (ax2 + b)q(x)2

)
(or switched).

Denote by Dk(x, a) the k-th Dickson polynomial which is defined by
the formula

Dk(x, a) =
b k

2
c∑

i=1

k

k − i

(
k − i

i

)
(−a)ixk−2i. (3)

A standard pair of third kind is
(
Dk(x, at), Dt(x, ak)

)
, where (k, t) = 1.

A standard pair of fourth kind is
(
a−k/2Dk(x, a), b−t/2Dt(x, b)

)
, where

(k, t) = 2.
A standard pair of fifth kind is

(
(ax2 − 1)3, 3x4 − 4x3

)
(or switched).

The following theorem is the main result of Bilu and Tichy [4].

Theorem A. Let f(x), g(x) ∈ Q[x] be nonconstant polynomials such

that the equation f(x) = g(y) has infinitely many solutions in rational

integers x, y. Then f(x) = ϕ
(
f1(λ(x))

)
and g(x) = ϕ

(
g1(µ(x))

)
, where

λ(x), µ(x) ∈ Q[x] are linear polynomials, ϕ(x) ∈ Q[x], and (f1(x), g1(x))
is a standard pair.

Using this theorem, Kulkarni and Sury [14] has recently obtained a
finiteness result concerning equations of the form x(x+1) . . . (x+(n−1)) =
g(y), where g(y) ∈ Q[y] is of degree ≥ 2.

Theorem B (Kulkarni, Sury, [14]). Let g(x) be a polynomial of

degree n ≥ 2 in Q[x], and let f(z) = z(z + 1)(z + 2) . . . (z + (m− 1)) with

m ≥ 3. If the equation

g(x) = f(z)

has infinitely many integer solutions x, z then the pair (m, g(x)) is one of

the following exceptional pairs:

• Exceptional pair A:
(
m,ψ(p(x))

)
, where p(x) is a nonconstant poly-

nomial.
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• Exceptional pair B: m even, g(x) = φm

(
δ(x)p(x)2

)
, where p(x) can be

a constant polynomial.

• Exceptional pair C: m even, g(x) = φm

(
cδ(x)r

)
for some non-zero

constant c and some odd integer r ≥ 3.

• Exceptional pair D: m even, g(x) = φm

(
(aδ(x)2 + b)p(x)2

)
, where

a, b ∈ Q.

• Exceptional pair E: m even, g(x) = φm

(
p(x)2

)
.

• Exceptional pair F: m = 4, g(x) = bδ(x)2 + 9
16 , where b ∈ Q \ {0},

where δ(x) is a linear polynomial, p(x) is a non-zero polynomial in Q[x]
and φm(x) =

(
x − 1

4

)(
x − 9

4

)
. . .

(
x− (m−1)2

4

)
, ψ(x) = x(x + 1)(x + 2)

. . . (x + (m− 1)).

A decomposition of a polynomial F (x) ∈ C[x] is defined as F (x) =
G1(G2(x)), where G1(x), G2(x) ∈ C[x]. The decomposition is nontrivial
if deg G1(x), deg G2(x) > 1. Two decompositions F (x) = G1(G2(x)) and
F (x) = H1(H2(x)) are called equivalent if there exists a linear polynomial
t(x) ∈ C[x] such that G1(x) = H1(t(x)) and H2(x) = t(G2(x)). The
polynomial F (x) is called decomposable if it has at least one nontrivial
decomposition, and indecomposable otherwise.

The following two results are due to Bilu et al. [3]. The first is con-
cerned with the decomposition of the n-th Bernoulli polynomial. The n-th
Bernoulli polynomial Bn(x) is defined by

tetx/(et − 1) =
∞∑

n=0

Bn(x)tn/n! .

Set Bn = Bn(0).

Theorem C. The polynomial Bn(x) is indecomposable for odd n. If

n = 2m is even, then any nontrivial decomposition of Bn(x) is equivalent

to Bn(x) = B̃m

(
(x − 1/2)2

)
, where B̃m(x) ∈ Q[x] is an indecomposable

polynomial of degree m.

The next result, which is also proved in [3], is a technical lemma which
we will be needed in our proofs.

Lemma 1. Let a1, b1, c1 ∈ Q \ {0} and a0, b0, c0 ∈ Q. Then the

polynomial Sm(a1x + a0) is neither of the form b1x
q + b0 with q ≥ 3, nor
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of the form c1Dk(x, a)+ c0, where Dk(x, a) is the k-th Dickson polynomial

with k > 4 and a ∈ Q \ {0}.

The following lemma is a simple consequence of Theorem C and the
well-known relation

Sm(x) = (Bm+1(x + 1)−Bm+1)/(m + 1). (4)

Lemma 2. The polynomial Sm(x) is indecomposable for even m. If

m = 2k − 1 is odd then any nontrivial decomposition of Sm(x) is equiva-

lent to

Sm(x) = ψm

((
x +

1
2

)2
)

, (5)

where ψm(x) = t(B̃k(x)) with t(x) = (x − Bm+1)/(m + 1) and with the

B̃k(x) specified in Theorem C.

In the next two lemmas we show that the polynomials Bm(x) and
ψm(x) have at least one non-real zero if m ≥ 6.

Lemma 3. For m ≥ 6 the m-th Bernoulli polynomial Bm(x) has a

non-real zero.

Lemma 4. If m > 6 is odd then both polynomials ψ′m(x) and

ψ′m(ax2 + b) have at least one non-real zero, where a, b are rationals with

a 6= 0.

For P (x) ∈ C[x], a complex number c is said to be an extremum if
P (x) − c has multiple roots. The P -type of c is defined to be the tuple
(α1, α2, . . . , αs) of the multiplicities of the distinct roots of P (x)− c. The-
orem D is concerning Dickson polynomials. For a proof see, for instance
[2, Proposition 3.3].

Theorem D. For a 6= 0 and k ≥ 3, Dk(x, a) has exactly two extrema

±2a
k
2 . If k is odd, then both are of P -type (1, 2, 2, . . . , 2). If k is even,

then 2a
k
2 is of P -type (1, 1, 2, . . . , 2) and −2a

k
2 is of P -type (2, 2, . . . , 2).

The next theorem is due to Ping-Zhi [15].
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Theorem E. Let a 6= 0, b 6= 0, c and n ≥ 3 be integers. Then apart

from the case when n = 4, c/a = −1/24 or 3/128, r = 2 and b/a is not a

square, all rational integer solutions x, y, r of the equation

a

(
x

n

)
= byr + c (6)

with x, y > 1, r > 1 satisfy

max(|x|, y, r) < C1,

where C1 is an effectively computable constant depending only on a, b, c

and n.

The last lemmas, which are concerned with some properties of the
m-th Bernoulli polynomials Bm(x), are due to Brillhart [5].

Lemma 5. If m is odd then Bm(x) has no multiple roots. For even

m the only polynomial which can be a multiple factor of Bm(x) over Q is

x2 − x− b, where b is a positive, odd integer.

Lemma 6. Let b be a real number. Then Bm(x) has 1
2 + bi

2 as a root

iff m is odd and b = 0.

4. Proofs

We start with the proofs of Lemma 3 and Lemma 4.

Proof of Lemma 3. It is easy to check that the polynomial B6(x)
has non-real zeros. Let m ≥ 6 and assume that our statement is true for
this m. We show that the lemma is true for m + 1, too. Suppose that
Bm+1(x) has only real zeros. Then, by Lemma 5, all the zeros of

B′
m+1(x) = (m + 1)Bm(x)

are real numbers, which is a contradiction. ¤

Proof of Lemma 4. From

Sm(x) =
Bm+1(x + 1)−Bm+1

m + 1
= ψm

((
x +

1
2

)2
)

(7)
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we deduce that

Bm

(
x +

1
2

)
= S′m

(
x− 1

2

)
= 2xψ′m

(
x2

)
. (8)

By Lemma 3 we can see that Bm(x + 1/2) has non-real zero, thus

∃ c, d ∈ R : d 6= 0 such that ψ′m
(
(c + di)2

)
= ψ′m

(
c2 − d2 + 2cdi

)
= 0. (9)

If c = 0 then Bm(1/2 + di) = 0 by (8) and (9). But this contradicts
Lemma 6. So c 6= 0 and we can write

ψ′m(x) = A

m−1
2∏

j=1

(x− αj), (10)

where α1 ∈ C \ R and A ∈ Q \ {0}. It follows from now that

ψ′m
(
ax2 + b

)
= A

m−1
2∏

j=1

(
ax2 + b− αj

)
(11)

and x =
√

(α1 − b)/a is a non-real zero of ψ′m(ax2 + b). ¤

4.1. Proof of Theorem 1.

Proof. Let g(x) ∈ Q[x] with deg g(x) > 2. Suppose that equation
(1) has infinitely many integer solutions x, y. Then by Theorem A, there
exist polynomials λ(x), µ(x), ϕ(x), f1(x), g1(x) ∈ Q[x] with deg λ(x) =
deg µ(x) = 1 such that

Sm(x) = ϕ(f1(λ(x))), and g(x) = ϕ(g1(µ(x))), (12)

where (f1(x), g1(x)) is a standard pair. Since deg Sm(x) = m+1 we obtain
from Lemma 2 and (12) that deg ϕ(x) = 1 or (m + 1)/2 or m + 1.

4.1.1. The case deg ϕ(x) = m + 1. If we assume that deg ϕ(x) = m + 1,
then we get from (12) that deg f1(x) = 1. Thus Sm(x) = ϕ(t(x)), where
t(x) ∈ Q[x] is a linear polynomial. If

t(x) = t1x + t0 then we set t−1(x) =
1
t1

x− t0
t1

.
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We obtain Sm(t−1(x)) = ϕ(t(t−1(x))) = ϕ(x). Hence we have

g(x) = ϕ(g1(µ(x))) = Sm(t−1(g1(µ(x)))) = Sm(q(x)),

where q(x) = t−1(g1(µ(x))) ∈ Q[x]. So, if deg ϕ(x) = m + 1, equation (1)
may have infinitely many integer solutions x, y only if g(x) is of the form
Sm(q(x)), where q(x) ∈ Q[x]. Obviously, if q(y) ∈ Z for infinitely many
integers y, then for these integers y, x = q(y), y are integer solutions of (1).

4.1.2. The case deg ϕ(x) = 1. Let ϕ(x) = ϕ1x + ϕ0, where ϕ1, ϕ0 ∈ Q
and ϕ1 6= 0. We study now the five kinds of standard pairs.

First consider the case when, in (12), (f1(x), g1(x)) is a standard pair
of first kind. From (12) we get then that either

i) Sm(λ−1(x)) = ϕ1x
t + ϕ0,

or
ii) Sm(λ−1(x)) = ϕ1axrq(x)t + ϕ0, where 0 ≤ r < t, (r, t) = 1 and

r + deg q(x) > 0.
In the first case, by Lemma 1 we obtain a contradiction if t = m + 1 ≥ 3.
In the remaining case m = 1, a simple calculation gives from i) that
ϕ0 = −1/8 and

g(x) =
1
2
(2ϕ1aµ(x)q(µ(x))2)− 1

8
= ψ1(δ(x)q1(x)2),

where δ(x) = 2ϕ1aµ(x) and q1(x) = q(µ(x)). Hence we get that (m, g(x))
is special pair of type II with m = 1.

In the second case, g(µ−1(x)) = ϕ1x
t+ϕ0. Thus, if t = deg g(x) > 3

then r ≤ 3 and the polynomial q(x) must be constant. Otherwise
Sm

(
λ−1(x)

)−ϕ0 would have a zero with at least four multiplicities, which
is impossible by a result of Brillhart [5] (see below where we study the
case of standard pair of fifth kind). But then

Sm

(
λ−1(x)

)
= ϕxr + ϕ0 with ϕ ∈ Q \ {0}. (13)

From Lemma 1 we know that r can be only 2. Now, from the investigation
of the case i) we see again that ϕ0 = −1/8, whence

g(x) = ϕ1µ(x)t − 1
8

=
1
2
(2ϕ1µ(x)t)− 1

8
= ψ1(cδ(x)t), (14)
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where t > 3 odd. That is (m, g(x)) is a special pair of type III.
For t = 3

Sm(x) = ϕ1aλ(x)rq(λ(x))3 + ϕ0, (15)

where r = 1 or 2. If q(x) is a constant polynomial we get back (13), so we
can assume that q(x) is not a constant. Then from

Bm(x + 1) = S′m(x) = ϕ1aλ(x)r−1q(λ(x))2
(
rλ′(x)q(λ(x))

+ 3λ(x)q′(λ(x))λ′(x)
)

we infer that Bm(x) has a multiple factor over the rational numbers,
namely q(λ(x − 1)). Then Lemma 5 gives for us that m is even and
q(λ(x − 1)) can be only x2 − x − b, where b is a positive, odd integer.
Comparing the degrees in (15) we can see that m can be only 6 while
r = 1. But in this case we have that S6(x) − ϕ0 has a root with three
multiplicities and so B6(x) has a double root. However, the discriminant
of B6(x) is 31/1815156 which is a contradiction.

Let now in (12) (f1(x), g1(x)) be a standard pair of second kind.
Then either

i) Sm(λ−1(x)) = ϕ1x
2 + ϕ0

or
ii) Sm(λ−1(x)) = ϕ1(ax2 + b)q(x)2 + ϕ0.

In the first case it is easy to see that m = 1, ϕ0 = −1/8. Hence

g(x) = ϕ1(aµ(x)2 + b)q(µ(x))2 − 1
8

= ψ1

(
(2ϕ1aµ(x)2 + 2ϕ1b)q(µ(x))2

)
,

that is (m, g(x)) is a special pair IV with m = 1. In the second case
deg g(x) = 2. But this contradicts the conditions of our theorem.

Next let (f1(x), g1(x)) be a standard pair of third kind.
Now from (12) we know that

Sm

(
λ−1(x)

)
= ϕ(f1(x)) = ϕ1Dk(x, at) + ϕ0. (16)

Since deg Dk(x, at) = k and deg Sm(λ−1(x)) = m+1, we get from Lemma 1
that (16) is not possible, provided that m > 3. In case m = 1 we can
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deduce from (16) that

k = 2, ϕ1 =
1

8u2
and ϕ0 =

at

4u2
− 1

8
,

where u ∈ Q \ {0}. Hence

g(x) = ϕ1Dt(µ(x), a2) + ϕ0

=
1
2

(
Dt(µ(x), a2) + 2at

4u2

)
− 1

8
.

It follows from Theorem D that the polynomial Dt(µ(x), a2) has exactly
two extrema: ±2at. Since t is odd, −2at is of type (1, 2, 2, . . . , 2). From
these we infer that Dt(µ(x), a2) + 2at = δ1(x)q1(x)2, where δ1(x), q1(x) ∈
Q[x] with deg δ1(x) = 1 and so (m, g(x)) is a special pair II with m = 1,
δ(x) = δ1(x)/4u2 and q(x) = q1(x)/2u.

If m = 2 then k = 3, (t, 3) = 1 and S2(x) = ϕ1D3(λ(x), at)+ϕ0. From
this last equality we can deduce that ϕ0 = 0 and

2x(2x + 1)(2x + 2) = 24ϕ1Dt(µ(y), a3). (17)

From Theorem B we can infer that if (17) has infinitely many integer
solutions then

24ϕ1Dt(µ(y), a3) = p(y)(p(y) + 1)(p(y) + 2),

where p(y) ∈ Q[y].
(18)

However, it follows from (18) that t =3deg p(y) which contradicts (t, 3)= 1.
Finally, if m = 3, after some computations we obtain from (16) that

m = 3, k = 4, t is odd, ϕ0 = 2ϕ1a
2t and g(x) = ϕ1

(
Dt(µ(x), a4) + 2a2t

)
.

Using again Theorem D we get that (m, g(x) = δ(x)q(x)2) is a special pair
of type VI.

Assume now that (f1(x), g1(x)) is a standard pair of fourth kind.
In this case we have

Sm(λ−1(x)) = ϕ(f1(x)) = ϕ1a
− k

2 Dk(x, a) + ϕ0,

where k ≥ 2 is even.
(19)

But, by Lemma 1, this is impossible in case m > 3. Since k is even we have
to study only the cases m = 1 and m = 3. After comparing the appropriate
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coefficients in (19) we get that, in case m = 1, ϕ0 = 2ϕ1 − 1/8, while, in
case m = 3, ϕ0 = 2ϕ1. Thus using again Theorem D, in the first case

g(x) = ϕ1b
−t/2Dt(µ(x), b) + ϕ0

= ϕ1b
−t/2

(
Dt(µ(x), b) + 2bt/2

)− 1
8

= ψ1

(
cq(x)2

)
,

where c = 2ϕ1b
−t/2 and in the second case

g(x) = ϕ1b
−t/2Dt(µ(x), b) + ϕ0

= ϕ1b
−t/2

(
Dt(µ(x), b) + 2bt/2

)
= ϕ1b

−t/2q(x)2.

It is easy to see that in both cases the equation (1) may have infinitely
many solutions only if the rational numbers c and ϕ1b

−t/2 are squares. So
we obtained the special pairs of type V and VII.

Finally, let (f1(x), g1(x)) be a standard pair of fifth kind.
From (12) we deduce that one of the two cases holds:

i) Sm

(
λ−1(x)

)
= ϕ

(
f1(x)

)
= ϕ1

(
ax2 − 1

)3 + ϕ0,

ii) Sm(λ−1(x)) = ϕ(f1(x)) = ϕ1(3x4 − 4x3) + ϕ0.
In both cases we infer that the polynomial Sm(λ−1(x))−ϕ0 has a zero with
at least three multiplicities. But the number of the roots as well as their
multiplicities of an algebraic equation remain unchanged if we replace x by
a linear polynomial, so it follows that the polynomial Sm(x)−ϕ0 has also
a zero with at least three multiplicities. By virtue of deg Sm(x) = m + 1
we get that, in case i), m = 5, while, in case ii), m = 3. From Lemma 5 we
know that for n odd, the n-th Bernoulli polynomial Bn(x) has no multiple
roots. Since

d

dx
(Sm(x)− ϕ0) =

d

dx

Bm+1(x + 1)
m + 1

= Bm(x + 1)

we arrive at a contradiction in both cases.

4.1.3. The case deg ϕ(x) = (m + 1)/2. Obviously, in this case m is odd.
Now from (12) we infer that deg f1(x) = 2. Hence (f1(x), g1(x)) cannot be
a standard pair of fifth kind. Further, the polynomial Sm(x) has a nontriv-
ial decomposition. By Lemma 2 we know that any nontrivial decomposi-
tion of Sm(x) is equivalent to the decomposition Sm(x) = ψm

(
(x+1/2)2

)
,
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so there exists a linear polynomial u(x) = u1x + u0 such that

ϕ(x) = ψm(u(x)) and u(f1(λ(x))) =
(

x +
1
2

)2

. (20)

First consider the case when, in (12), (f1(x), g1(x)) is a standard pair
of first kind.

Assume that (f1(x), g1(x)) = (xt, axrp(x)t), where 0 ≤ r < t, (r, t) = 1
and r + deg p(x) > 0. Since deg f1(x) = 2, we have (f1(x), g1(x)) =
(x2, axp(x)2). If λ(x) = λ1x + λ0 then from (20) we deduce that u(x) =
(1/λ2

1)x and

g(x) = ψm(u(g1(µ(x)))) = ψm

(
aµ(x)p(µ(x))2

λ2
1

)
. (21)

If we define the polynomials δ(x) and q(x) by δ(x) = aµ(x)/λ2
1, q(x) =

p(µ(x)), then the pair (m, g(x)) is of special pair of type II.
We mention that we can choose a linear polynomial δ(x) ∈ Q[x] and

a polynomial q(x) ∈ Q[x] such that (m, g(x)) is a special pair of type II
and equation (1) has infinitely many integer solutions x, y. Indeed, if δ(y)
is the square of a rational number for infinitely many integer y and for
these integers y,

√
δ(y)q(y) − 1/2 ∈ Z then x =

√
δ(y)q(y) − 1/2, y are

solutions of (1). For example, if δ(x) = x and q(x) = xt + · · · + x + 1/2,
then for every integer k the integers x = (2k + 1)q((2k + 1)2) − 1/2 and
y = (2k + 1)2 are solutions of (1).

In the switched case (f1(x), g1(x)) = (axrp(x)t, xt), where 0 ≤ r < t,
(r, t) = 1 and r + deg p(x) > 0. In view of deg f1(x) = 2 there are two
possibilities:

i) r = 0, t = 1 and deg p(x) = 2
or

ii) r = 2, t > 2 odd and deg p(x) = 0.
If i) holds, we have g1(x) = x and thus

g(x) = ψm(u(g1(µ(x)))) = ψm(u(µ(x))). (22)

Then the pair (m, g(x)) is a special pair of type II with δ(x) = u(µ(x)) and
q(x) ≡ 1. In case ii) we get from (20) that f1(x) = bx2 and u(x) = x/(bλ2

1),
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where b ∈ Q \ {0}. Thus

g(x) = ψm(u(g1(µ(x)))) = ψm

(
(µ(x))t

bλ2
1

)
. (23)

It is easy to see that in this case the pair (m, g(x)) is a special pair of type
III with δ(x) = µ(x), c = 1/(bλ2

1) and t ≥ 3 odd.
In the last case we can choose the linear polynomial δ(x) ∈ Q[x], the

c ∈ Q\{0} and the odd integer t ≥ 3 such that for infinitely many integer y,
cδ(y)t is a rational square and

√
cδ(y)t−1/2 ∈ Z. Then x =

√
cδ(y)t−1/2,

y are solutions of (1). For example, if we choose c = 1/4, t = 29, δ(x) = x,
then we obtain that x = −1/2 + (2k + 1)29/2, y = (2k + 1)2 are solutions
of (1) for every integer k.

Next assume that in (12) (f1(x), g1(x)) is a standard pair of second
kind.

Now (f1(x), g1(x)) = (x2, (ax2 + b)p(x)2) or switched. If f1(x) =
(ax2 + b)p(x)2 then we have g1(x) = x2 and p(x) is a constant polynomial.
Hence

g(x) = ψm(u(g1(µ(x)))) = ψm

(
u1µ(x)2 + u0

)
. (24)

This means that (m, g(x)) is a special pair of type IV with q(x) ≡ 1.
When f1(x) = x2, after some simple calculation it follows from (20) that
u(x) = x/(λ2

1). So

g(x) = ψm(u(g1(µ(x)))) = ψm

((
aµ(x)2 + b

)
p(µ(x))2

λ2
1

)
. (25)

With the notation δ(x) = µ(x) and q(x) = p(µ(x))/λ1 we get that

g(x) = ψm

(
(aδ(x)2 + b)q(x)2

)
.

This implies that the pair (m, g(x)) is a special pair of type IV. Similarly,
in case of special pairs of type II and III we can see that if

(
aδ(y)2+b

)
q(y)2

is a rational square and
√(

aδ(x)2 + b
)
q(y)2 − 1/2 ∈ Z for infinitely many

integers y then (1) has infinitely many integer solutions x, y.
For example, consider the case when a = 8, b = −119, δ(x) = 2x− 13

and q(x) ∈ Q[x] is a polynomial for which q(x)− 1/2 ∈ Z[x]. In this case
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(1) has infinitely many integer solutions, namely

x =
2a2w+1q(y)− 1

2
, y =

b2w+1 + 26
4

for w = 0, 1, . . . ,

where aw and bw are defined by (a0, b0) = (3, 8), (aw+1, bw+1) = (3aw+4bw,
2aw + 3bw).

Let now (f1(x), g1(x)) be a standard pair of third kind.
In this case (f1(x), g1(x)) = (D2(x, at), Dt(x, a2)) with odd t. Substi-

tuting the value of f1(x) = x2 − 2at into (20) we obtain that u1 = 1/λ2
1

and u0 = 2at/λ2
1. Further,

g(x) = ψm(u(g1(µ(x)))) = ψm

(
Dt(µ(x), a2) + 2at

λ2
1

)
. (26)

From Theorem D we know that the polynomial Dt(µ(x), a2)/λ2
1 has ex-

actly two extrema: ±2at/λ2
1. Since t is odd both extrema are of type

(1, 2, 2, . . . , 2). From these we deduce that g(x) = ψm(δ(x)q(x)2), where
δ(x), q(x) ∈ Q[x] with deg δ(x) = 1. Hence (m, g(x)) is a special pair of
type II.

Finally, let (f1(x), g1(x)) be a standard pair of fourth kind.
Then (f1(x), g1(x)) = (a−1D2(x, a), b−t/2Dt(x, b)) with even t. From

(20) it follows that u1 = a/λ2
1, u0 = 2a/λ2

1 and

g(x) = ψm(u(g1(µ(x)))) = ψm

(
ab−t/2Dt(µ(x), b) + 2a

λ2
1

)
. (27)

Now, the extrema of the polynomial ab−t/2Dt(µ(x), b)/λ2
1 are±2bt/2ab−t/2/

λ2
1 = ±2a/λ2

1, and the extremum −2a/λ2
1 is of type (2, 2, . . . , 2) by The-

orem D. Therefore g(x) = ψm(q(x)2) and (m, g(x)) is a special pair of
type V. It is easy to see that if in the last case q(x)− 1/2 ∈ Z[x] then (1)
has infinitely many integer solutions, for example (x, y) = (q(k)− 1/2, k),
where k ∈ Z.

The proof of Theorem 1 is completed. ¤

4.2. Proof of Theorem 2.

Proof. In case deg F (x) = 1 our equation (2) is of the form

Sm(x) = a

(
y

n

)
+ b, (28)
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where a 6= 0, b are rational numbers. Assume that n > 2 and (28) has
infinitely many integer solutions x, y, then from Theorem 1 and Theorem B
we get that

(
m,

a

n!
fn(y) + b

)
is a special pair and

(
n,

n!
a

(Sm(x)− b)
)

is an exceptioanl pair,
(29)

where fn(x) = x(x− 1) . . . (x− (n− 1)). If we compare the degrees of the
polynomials in each possible (special pair, exceptional pair) case, we get
Table 1, where C means a contradiction, p and q denote the degrees of the
polynomials p(x) of Theorem B and q(x) of Theorem 1, respectively. The
row index and the column index indicate the corresponding special pair(
m, a

n!fn(y) + b
)

and exceptional pair
(
n, n!

a (Sm(x)− b)
)
, respectively.

For example, if
(
m, a

n!fn(y) + b
)

is a special pair II and(
n, n!

a (Sm(x)− b)
)

is an exceptional pair A, we get that

a

n!
fn(y) + b = ψm

(
δ(x)q(x)2

)
and

n!
a

(Sm(x)− b) = ψ(p(x)). (30)

Comparing the degrees we have

n =
m + 1

2
(2 deg q(x) + 1) and m + 1 = n deg p(x). (31)

It gives us that 2 = deg p(x)(2 deg q(x) + 1), from which it follows that
deg q(x) = 0, deg p(x) = 2 and m + 1 = 2n. In the case when((

m, a
n!fn(y) + b

)
,
(
n, n!

a (Sm(x)− b)
))

is a pair of (II, B) we obtain that

n =
m + 1

2
(2 deg q(x) + 1) and m + 1 =

n

2
(2 deg p(x) + 1),

from which we get 4 = (2 deg q(x)+ 1)(2 deg p(x)+ 1) which is impossible.
We now study those cases in which we do not get a contradiction

comparing the degrees. We see from the Table 1 and the definitions of
special pairs and exceptional pairs that in cases (II, A), (II, D) and (II, E)

ac

n!
f ′n(cy + d) = ψ′m(y). (32)

Since every zeros of f ′n(cy + d) are reals, we get m < 6 by Lemma 4. We
infer from m+1 = 2n that (m,n) can be only (5, 3). However, if m = 5 and
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A B C D E F

I p = q = 1 p = 0, q = 2 C p = 0, q = 1 p = q = 1 m = 1,

n = m + 1 n = 2(m + 1) n = m + 1 n = m + 1 n = 4

II p = 2, q = 0 C C p = 1, q = 0 p = 2, q = 0 C

m + 1 = 2n m + 1 = 2n m + 1 = 2n

III C C C C C C

IV p = 1, q = 0 p = 0, q = 1 C p = q = 0 p = 1, q = 0 m = 1,

n = m + 1 n = 2(m + 1) n = m + 1 n = m + 1 n = 4
q = 1

V p = q = 1 p = 0, q = 2 C p = 0, q = 1 p = q = 1 m = 1,

n = m + 1 n = 2(m + 1) n = m + 1 n = m + 1 n = 4
q = 2

VI C C C C C C

VII m = 3, n = 4 m = 3, n = 8 C m = 3, n = 4 m = 3, n = 4 C

p = 0

Table 1: Exceptional pairs

n = 3, (32) is not possible, because the polynomial ψ′5(y) has a rational
zero, while the polynomial f ′3(y) has only irrational zeros.

In the following six cases (IV, A), (IV,D), (IV, E), (V, A), (V, D),
(V, E) we can deduce that

ac

n!
f ′n(cy + d) = ψ′m(uy2 + v)2uy, (33)

where c, d, u, v ∈ Q and cu 6= 0. Hence, using again the above argument
and Lemma 4, we get that (m,n) can be only (3, 4) and (5, 6). If (m,n) =
(5, 6) we have from (33) that

ac

n!
f ′6(cy + d) =

uy

48
(
4(uy2 + v)− 1

)(
12(uy2 + v)− 7

)
. (34)

If we substitute y = 0 into (34) we get that d = 5/2. Since
(
15 +

√
105 + 24

√
7

)
/6 is a zero of f ′6(y), it is easy to compute from (34) that

(
4

(
u

105 + 24
√

7
36c2

+ v

)
− 1

)(
12

(
u

105 + 24
√

7
36c2

+ v

)
− 7

)
= 0. (35)
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But (35) is impossible because
√

7 is not rational. Hence (m,n) can not
be (5, 6).

Investigating the cases (I, A), (I, D) and (I, E), we get that

a

n!
fn(cy + d) + b = Sm(y). (36)

It follows from this that

ac

n!
f ′n(c(y − 1) + d) = S′m(y − 1) = Bm(y). (37)

By Lemma 3, (37) holds only if m < 6. Thus in view of n = m + 1 the
pair (m,n) can be only (2, 3), (3, 4), (4, 5) or (5, 6). We know that 0, 1/2
and 1 are zeros of the polynomials B3(y) and B5(y). Further, it is easy to
check that there is only one rational zero of the polynomials f ′4(y), f ′6(y)
and f ′′5 (y). Hence from (37) we obtain that −c + d = d = −c/2 + d and so
c = 0, which is a contradiction. This implies that (m, n) can not be (3, 4),
(4, 5) or (5, 6).

We now study the cases (I, B), (IV,B), (V, B), (VII, B). It is easy to
see that

n!
a

(Sm(x)− b) = φn(cx + d). (38)

If we differentiate in (38) we get

Bm(x) = S′m(x− 1) =
ac

n!
φ′n(c(x− 1) + d). (39)

But from Lemma 3 we know that this is possible only if m < 6, because all
the zeros of φ′n(x) are real. Using n = 2(m+1) we find that (m,n) can be
only (1, 4), (2, 6), (3, 8), (4, 10) or (5, 12). Since φ′8(x), φ′12(x) and φ′′10(x)
have not any rational zero, but B2k+1(1/2) = 0 for k ≥ 0, by (39), (m,n)
can not be (3, 8), (4, 10) or (5, 12). In case m = 2 and n = 6, comparing
the zeros of the polynomials B2(x) and φ′6(c(x − 1) + d) in (39), we get
that c = ±4

√
21/3. But in (39) c is rational thus (m,n) 6= (2, 6).

Now, in each of the remaining cases (m,n) = (1, 4), (2, 3), (3, 4) we
give a concrete equation which has infinitely many integer solutions x, y.
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(m, n) Equation Solutions

(1, 4) S1(x) = 3
�

y
4

�
+1 x = y2−3y

2

(2, 3) S2(x) = 1
4

�
y
3

�
y = 2x + 2

(3, 4) S3(x) = 24
�

y
4

�
+ 1 x = aw−1

2
, y = bw+3

2

Here, in the last row aw and bw are defined by (a0, b0) = (21, 15) and
(aw+1, bw+1) = (3aw + 4bw, 2aw + 3bw) for w = 0, 1, . . . .

Next, suppose that p = deg F (x) ≥ 3 is a prime, and that equation
(2) has infinitely many integer solutions x, y with x ≥ n, y ≥ 1. Then the
equation

Sm(x) = F (y) in positive integers x, y, (40)

has also infinitely many solutions. It follows from Theorem 1 that the pair
(m,F (x)) is a special pair. Since deg F (x) = p ≥ 3 is a prime we get from
the definition of special pairs that (m,F (x)) can be special pair only if
m ∈ {1, 3, p− 1, 2p− 1}.

If m = 1, then our equation takes the form

S1(x) = 1 + 2 + · · ·+ x =
(

x + 1
2

)
= F

((
y

n

))
. (41)

Then it follows from Theorem 2 of our paper [17] that equation (41) may
have infinitely many integer solutions only if n = 1, 2 or 4. In each of these
cases we gave in [17] concrete examples for equations of the form (41) with
infinitely many integer solutions.

In case m = 3 we have F (x) = δ(x)q(x)2, where δ(x), q(x) ∈ Q[x]
with deg δ(x) = 1. In this case our equation is of the form

(
x(x + 1)

)2 = 4δ

((
y

n

))
q

((
y

n

))2

. (42)

But by Theorem E, (42) has only finitely many integer solutions apart
from n = 1, 2 and 4.

The case m = p − 1 occurs only if F (x) = Sm(q(x)), where q(x) is
a linear polynomial with rational coefficients. Then we have to study the
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equation

Sm(x) = Sm

(
q

((
y

n

)))
. (43)

Obviously, if q(x) ∈ Z[x] then x = q
((

y
n

))
, y ≥ n are solutions of (43).

In the last case when m = 2p − 1, we have F (x) = ψm(δ(x)), where
δ(x) is a linear polynomial with rational coefficients. Now, from (2) we get
the equation

ψm

((
x +

1
2

)2
)

= Sm(x) = F

((
y

n

))
= ψm

(
δ

((
y

n

)))
. (44)

Of course, equation (44) has infinitely many integer solutions only if the
equation

4δ

((
y

n

))
= (2x + 1)2 (45)

has also infinitely many solutions. But we know from Theorem E that
equation (45) may have infinitely many integer solutions x, y only if n = 1,
2 or 4. It is easy to see that the equation

4
(

1
2
y +

1
4

)
= (2x + 1)2 (46)

has infinitely many positive integer solutions. If n = 2, the equation

4
(

1
4

(
y

2

)
+

15
4

)
= (2x + 1)2 (47)

has infinitely many solutions in positive integers x, y, namely

x =
b2w+1 − 2

4
, y =

a2w+1 + 1
2

, for w = 0, 1, . . . ,

where aw and bw are defined by (a0, b0) = (3, 8), (aw+1, bw+1) = (3aw +
4bw, 2aw + 3bw).

Finally, when n = 4 it is easy to check that for each integer y ≥ 4,

x =
y2 − 3y

2
is a solution of the equation

4
(

6
(

y

4

)
+

1
4

)
= (2x + 1)2 (48)

in positive integers. ¤
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