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Interval-filling sequences with respect
to a finite set of real coefficients

By Z. BOROS (Debrecen)

Abstract. A generalization of interval-filling sequences given in [2] served as a
powerful device for a representation of real numbers in canonical number systems. In
this paper the coefficient set {0, 1, . . . , N} is replaced by an arbitrary finite set of real
numbers. Though the complete characterization of interval-filling sequences of this type
is given only in special cases, some general results are also obtained. Finally, an example
shows that generally no necessary and sufficient condition of the “usual” form exists.

Notation. Denote by P a fixed finite set of real numbers. Write P =
{p0, p1, . . . , pN} where N ∈ N (i.e. N is a positive integer) and pi−1 < pi

for i = 1, 2, . . . , N . Let Λ denote the set of real sequences λ = (λn) for
which
(i) |λn| > |λn+1| > 0 for every n ∈ N and

(ii)
∞∑

n=1

|λn| < ∞.

Set
Λ+ = {(λn) ∈ Λ | λn > 0 for every n ∈ N}

and for λ ∈ Λ define

S(P, λ) =

{ ∞∑
n=1

εnλn | εn ∈ P for every n ∈ N
}

,

L+
k =

∞∑

n=k+1

λ+
n , L−k =

∞∑

n=k+1

λ−n , Lk =
∞∑

n=k+1

λn (k = 0, 1, 2, . . . )

where x+ = max{x, 0}, x− = max{−x, 0}, and

Ik(P, λ) = [p0L
+
k − pNL−k , −p0L

−
k + pNL+

k ] (k = 0, 1, 2, . . . ).
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Obviously S(P, λ) ⊆ I0(P, λ) and the endpoints of the interval I0(P, λ)
are contained in S(P, λ).

Definition. We call the sequence λ ∈ Λ interval-filling of type P , if
S(P, λ) = I0(P, λ).

Let IF (P ) denote the set of interval-filling sequence of type P . By
definition, IF (P ) ⊆ Λ.

Our first result is a sufficient condition for the interval-filling property
of this type.

Theorem 1. Put λ = (λn) ∈ Λ. If

(1) |λn| ≤ pN − p0

dP

∞∑

k=n+1

|λk|

with dP = max{pj − pj−1 | j = 1, . . . , N} holds for every n ∈ N, then
λ ∈ IF (P ).

Proof. First suppose p0 = 0. Then (1) can be written in the form

(1a) dP |λn| ≤ pN (L+
n + L−n )

and Ik(P, λ) = [−pNL−k , pNL+
k ] (k = 0, 1, 2, . . . ). According to the remark

before the definition we have to prove I0(P, λ) ⊆ S(P, λ). Choose x ∈
I0(P, λ) arbitrarily. Set s0(x) = 0 and

(2) sn(x) = sn−1(x) + αn(x)λn

for n ≥ 1, supposed that sn−1(x) is already defined, An(x) 6= ∅ where

An(x) = {p ∈ P | x ∈ sn−1(x) + pλn + In(P, λ)}
and αn(x) ∈ An(x). First we show that such a construction can be con-
tinued i.e. An(x) is a non-empty subset of P for all n ∈ N, whenever (1a)
is satisfied. Let us assume that sm−1(x) is defined but Am(x) = ∅ for
some m ∈ N. Observe that x ∈ s0(x) + I0(P, λ) = I0(P, λ) while in case
1 ≤ n < m the assumption An(x) 6= ∅ implies

x ∈ sn−1(x) + αn(x)λn + In(P, λ) = sn(x) + In(P, λ).

Thus we have proved x ∈ sm−1(x) + Im−1(P, λ). Recalling

Im−1(P, λ) = [−pNL−m−1, pNL+
m−1] = [−pN (λ−m + L−m), pN (λ+

m + L+
m)]

we have

sm−1(x)− pNλ−m − pNL−m ≤ x ≤ sm−1(x) + pNλ+
m + pNL+

m.

Since {−λ−m, λ+
m} = {0, λm}, the above boundaries for x are in the intervals

sm−1(x)+0λm+Im(P, λ) and sm−1(x)+pNλm+Im(P, λ). The assumption
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Am(x) = ∅ then means that there exists j ∈ {1, 2, . . . , N} such that
x has its value between the intervals sm−1(x) + pj−1λm + Im(P, λ) and
sm−1(x) + pjλm + Im(P, λ). Hence

a) in case λm > 0 we have

sm−1(x) + pj−1λm + pNL+
m < x < sm−1(x) + pjλm − pNL−m

while
b) in case λm < 0 we have

sm−1(x) + pjλm + pNL+
m < x < sm−1(x) + pj−1λm − pNL−m.

Both imply

(3) pN (L+
m + L−m) < (pj − pj−1)|λm|

in contradiction with (1a). Thus Am(x) cannot be empty. So the sequence
(sn(x)) can be defined as above and we have derived

x ∈ sn(x) + In(P, λ)

and consequently

|x− sn(x)| ≤ pN max{L−n , L+
n } ≤ pN

∞∑

k=n+1

|λk|

for all n ∈ N. Since Σλn is absolutely convergent, the right side of the
above inequality is a null-sequence. Therefore

x = lim
n→∞

sn(x) =
∞∑

n=1

αn(x)λn,

in other words x ∈ S(P, λ).
When p0 6= 0, introduce p0

j = pj − p0 (j = 0, 1, . . . , N), P 0 = {p0
j |

j = 0, 1, . . . , N} and observe p0
0 = 0, p0

j−1 < p0
j (j = 1, . . . , N), dP 0 = dP ,

p0
N − p0

0 = pN − p0, I0(P, λ) = p0L0 + I0(P 0, λ) and S(P, λ) = p0L0 +
S(P 0, λ). Then the sequence λ satisfies the inequalities obtained from (1)
by replacing the elements of P with those of P 0 and our above argument
proves I0(P 0, λ) = S(P 0, λ), which implies I0(P, λ) = S(P, λ).

The sufficient condition given in the above theorem consists of an
infinite number of inequalities. Now we prove that the first of these is
necessary as well.

Theorem 2. If the sequence λ = (λn) ∈ Λ is interval-filling of type
P , then

(4) |λ1| ≤ pN − p0

dP

∞∑

k=2

|λk|.
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Proof. At the first step we assume λ1 > 0 and p0 = 0. In this case
the inequality (4) can be written in the form

(4a) dP λ1 ≤ pN (L+
1 + L−1 ).

If (4a) is not true, that is, there exists a j ∈ {1, . . . , N} such that

(pj − pj−1)λ1 > pN (L+
1 + L−1 ),

we can calculate

(5) pjλ1 −
∞∑

n=2

pNλ−n > pj−1λ1 +
∞∑

n=2

pNλ+
n .

Each side in (5) is an element of S(P, λ) and S(P, λ) ⊆ I0(P, λ). Choose
a real number x between these two numbers, and coefficient sequences
(δn), (εn) : N → P such that δ1 ≥ pj and ε1 ≤ pj−1. Then x ∈ I0(P, λ)
and

(6)
∞∑

n=1

δnλn ≥ pjλ1 −
∞∑

n=2

pNλ−n > x > pj−1λ1 +
∞∑

n=2

pNλ+
n ≥

∞∑
n=1

εnλn.

If (σn) : N → P is an arbitrary coefficient sequence, either σ1 ≥ pj or
σ1 ≤ pj−1 holds, so x 6= Σ∞n=1σnλn according to (6), in other words
x 6∈ S(P, λ) in contradiction with the hypothesis λ ∈ IF (P ). This proves
(4a).

To get rid off the assumption p0 = 0 one can use the coefficient set P 0

introduced in the previous proof and follow the converse of the argument
presented there.

In case λ1 < 0 our considerations are valid for the sequence −λ =
(−λ1,−λ2, . . . ). Since S(P,−λ) = −S(P, λ) and I0(P,−λ) = −I0(P, λ),
λ ∈ IF (P ) implies −λ ∈ IF (P ) and then (4) holds for the sequence −λ,
hence (4) is true.

In the special case when λ is a geometric sequence, the inequality
(4) implies all the inequalities of the form (1), thus it is a necessary and
sufficient condition for λ ∈ IF (P ). Applying a closed form for the infinite
sum it is easy to derive the following

Corollary. Let q ∈ R, 0 < |q| < 1. The sequence (qn) is interval-
filling of type P if and only if

(7) |q| ≥ dP

dP + pN − p0
.

Our following result is a necessary condition, which consists of infin-
itely many inequalities like Theorem 1.
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Theorem 3. If the sequence λ = (λn) ∈ Λ is interval-filling of type
P , then

(8) |λn| ≤ pN − p0

gP

∞∑

k=n+1

|λk|

with gP = min{p1 − p0, pN − pN−1} holds for every n ∈ N. If moreover
λ ∈ Λ+ ∩ IF (P ), then

(9) λn ≤ pN − p0

g∗P

∞∑

k=n+1

λk

with g∗P = max{p1 − p0, pN − pN−1} also holds for every n ∈ N.

Proof. Let us suppose that λ ∈ IF (P ) but there exists r ∈ N such
that (8) does not hold for n = r. We can also assume p0 = 0 and λr > 0
(as we pointed out for r = 1 in the proof of Theorem 2), thus we have

gP λr > pN

( ∞∑

k=r+1

λ+
k +

∞∑

k=r+1

λ−k

)
,

which, choosing an appropriate x ∈ R and applying the definition of qP ,
can be written in the form

(10)

p1λr − pN

∞∑

k=1

λ−k ≥ gP λr − pN

∞∑

k=1

λ−k

> x > pN

∞∑

k=r+1

λ+
k − pN

r∑

k=1

λ−k .

The first and the last arguments of this sequence of inequalities are ele-
ments of the set S(P, λ) and, consequently, of the interval I0(P, λ). Hence
x ∈ I0(P, λ), and then there exists (δn) : N→ P such that x = Σ∞n=1δnλn.
Now we can determine δm for m ≤ r:
a) if m ≤ r and λm > 0 then δm = 0, because δm ≥ p1 would imply

x =
∞∑

n=1

δnλn ≥ p1λm − pN

∞∑

k=1

λ−k ≥ p1λr − pN

∞∑

k=1

λ−k > x,

which is a contradiction;
b) if m ≤ r and λm < 0 then δm = pN , because δm ≤ pN−1 would imply
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x =
∞∑

n=1

δnλn ≥ −pN−1λ
−
m −

∑

n∈N\{m}
pNλ−n = (pN − pN−1)λ−m

− pN

∞∑
n=1

λ−n ≥ gP |λm| − pN

∞∑
n=1

λ−n ≥ gP λr − pN

∞∑
n=1

λ−n > x,

which is a contradiction again.
Applying the above results and the last inequality of (10) we get

x =
∞∑

n=1

δnλn =
r∑

n=1

pN (−λ−n ) +
∞∑

n=r+1

δnλn

≤ −pN

r∑
n=1

λ−n + pN

∞∑
n=r+1

λ+
n < x,

which is impossible. This contradiction proves the first proposition in the
theorem.

We can also assume p0 = 0 throughout the proof of the second propo-
sition in the theorem. In case g∗P = p1 we wish to derive

(9a) p1λn ≤ pN

∞∑

k=n+1

λk

for all n ∈ N. Its negative would mean the existence of r ∈ N and x ∈ R
such that

p1λr > x >

∞∑

k=r+1

pNλk,

consequently x ∈ I0(P, λ)\S(P, λ) in contradiction with the hypothesis
λ ∈ IF (P ). When g∗P = pN − pN−1 we can introduce the coefficients
pai = pN − pN−i (i=0, 1, . . . , N) and the set Pa = {pai | i=0, 1, . . . , N}.
Then pa0 = 0, paN = pN . Yet λ ∈ IF (Pa), because x ∈ I0(Pa, λ) =
[0, pNL0] implies pNL0−x ∈ [0, pNL0] = I0(P, λ) = S(P, λ), and choosing
a coefficient sequence (δn) : N → P such that pNL0 − x = Σ∞n=1δnλn, we
get

x =
∞∑

n=1

(pN − δn)λn,

where pN−δn ∈ Pa, therefore x ∈ S(Pa, λ). Observe also paN−paN−1 = p1,
g∗Pa = pa1 = pN − pN−1 = g∗P . Now we can apply the above established
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inequality (9a) for the coefficient set Pa to obtain (9) in the case g∗P =
pN − pN−1.

Let us mention here that for non sign-preserving sequences gP cannot
be always replaced by g∗P in (8). For example consider P = {0, 1, 2, 4},
λ1 = 3

2 , λ2 = −1 and λn = 1
4

(
1
3

)n−3 for n ≥ 3. Besides, if m ∈ N ∪
{0}, we use the notation Tmλ for the sequence called the mth tail of the
sequence λ, whose nth element is λm+n. In our example T 2λ satisfies the
sufficient condition given in Theorem 1, consequently T 2λ ∈ IF (P ). A
simple calculation shows that for any x ∈ I0(P, λ) = [−4, 7.5] we can find
ε1(x), ε2(x) ∈ P such that x − ε1(x)λ1 − ε2(x)λ2 ∈ [0, 1.5] = I2(P, λ) =
I0(P, T 2λ) = S(P, T 2λ), therefore x ∈ S(P, λ), hence λ ∈ IF (P ). On the
other hand,

|λ2| > pN − p0

g∗P

∞∑

k=3

|λk|.

Observe, that in case dP = gP the combination of Theorem 1 and
the first part of Theorem 3 gives the characterization of interval-filling
sequences of type P . The assumption dP = gP can be written in the form

(11) pN − pN−1 = p1 − p0 ≥ pi − pi−1 (i = 2, . . . , N − 1).

Since the coefficient set P = {0, 1, 2, . . . , N} satisfies (11), Theorem 1
in [2] is a special case of our results. In case dP = g∗P , i.e. when dP ∈
{p1 − p0, pN − pN−1}, we can characterize the sequences λ ∈ IF (P ) ∩ Λ+

by combaining Theorem 1 with the second part of Theorem 3, obtaining
a generalization of Satz. 2.1 in [1].

One would naturally wish to characterize the interval-filling sequences
of type P for an arbitrary coefficient set P . But consider our previous
example again. As it was presented, λ ∈ IF (P ), consequently (8) holds
for every n ∈ N by Theorem 3. Therefore T 1λ also satisfies (8) for every
n ∈ N. On the other hand (1) does not hold for n = 2, i.e. T 1λ does
not satisfy (4), hence T 1λ is not interval-filling of type P by Theorem 2.
Thus the sufficient condition given in Theorem 1 is not necessary while
the necessary condition given in Theorem 3 is not sufficient. Furthermore,
let us suppose that there exists a number h(P ) depending only on the
coefficient set P such that a sequence λ ∈ Λ is interval-filling of type P if
and only if

(12) |λn| ≤ h(P )
∞∑

k=n+1

|λk|

holds for every n ∈ N. Consider any sequence λ ∈ IF (P ). Then (12)
holds for all n ∈ N. Therefore T 1λ also satisfies (12) for all n ∈ N, hence
T 1λ ∈ IF (P ). In other words, λ ∈ IF (P ) should imply T 1λ ∈ IF (P ).
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But in the above example λ ∈ IF (P ) and T 1λ 6∈ IF (P ). Thus no such
characterization is available in general. The situation λ ∈ IF (P ) with
T 1λ 6∈ IF (P ) occurs even if we are restricted to the sequences in Λ+ (see
P = {0, 1, 3, 4}, λ1 = 2, λ2 = 1 and λn = 1

4

(
1
3

)n−3 for n ≥ 3).
Finally let us give a general result:

Theorem 4. Put λ = (λn) ∈ Λ. All the tails Tmλ (m = 0, 1, 2, . . . )
of the sequence λ are interval-filling of type P if and only if (1) holds for
every n ∈ N.

Proof. It is an immediate consequence of Theorem 1 and Theorem 2.
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