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Quadratic irrational integers with partly prescribed
continued fraction expansion

By ALFRED J. VAN DER POORTEN (Sydney)

To the memory of Professor Dr. Béla Brindza

Abstract. We generalise remarks of Euler and of Perron by explaining how
to detail all quadratic integers for which the symmetric part of their continued
fraction expansion commences with prescribed partial quotients.

I last saw Béla Brindza, my once postdoctoral student, in April, 2002.
I was working on the paper below and attempted to enthuse him with its
results, particularly those concerning periodic expansions in function fields
of characteristic zero.

1. Periodic continued fractions

Suppose ω satisfies ω2− tω+n = 0 and is an integer. That is, its trace
t = ω + ω and norm n = ωω both are rational integers. Then it is well
known that the continued fraction expansion of ω is periodic and is of the
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shape
ω =

[
a0, a1, . . . , ar−1, 2a0 − (ω + ω)

]
, (1)

where the word a1, . . . , ar−1 is a palindrome.

Example 1. We have
√

61 =
[
7, 1, 4, 3, 1, 2, 2, 1, 3, 4, 1, 14

]
. Just so,

(1 +
√

61 )/2, an integer of trace 1, has expansion
[
4, 2, 2, 7

]
.

Although the question was already asked and is partially answered by
Euler, see the very interesting translation [3], and is discussed by Perron

[9], it is noticeably less well known that given an arbitrary palindrome
a1, . . . , ar−1 in positive integers there are infinitely many positive integers
A = a0 so that (1) displays the expansion of a quadratic integer.

We explain that argument and rather more. Indeed, noting that for
every h we have the expansion ω =

[
A, a1, . . . , ah, (ω + Ph+1)/Qh+1

]
with

integers P = Ph+1, and Q = Qh+1 (that is, the complete quotients ωh+1

of ω all are of the indicated shape), we find all quadratic integers ω for
which the symmetric part of its continued fraction expansion commences
with the integers a1, . . . , ah. Specifically, we find the constraints on A, P ,
and Q so that ω is indeed integral with trace t and norm n.

Our remarks are of particular interest in the function field case, where
such translations as ‘positive integer’= ‘polynomial of degree at least one’,
‘integer part’ = ‘polynomial part’, and ‘integer’= ‘polynomial’ are to be
applied. There, however, the results in the the characteristic two case
demand a distinct summary.

2. Continued fractions

Anyone attempting to compute the truncations [a0, a1, . . . , ah] =
xh/yh of a continued fraction will be delighted to notice that the definition

[a0, a1, . . . , ah] = a0 + 1/[a1, . . . , ah]

immediately implies by induction on h that there is a correspondence
(

a0 1
1 0

)(
a1 1
1 0

)
· · ·

(
ah 1
1 0

)
=

(
xh xh−1

yh yh−1

)
←→ [a0, a1, . . . , ah] = xh/yh
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between products of certain two by two matrices and the convergents of
fractions.

If α = [a0, a1, a2, . . . ] then the sequence (αh) of complete quotients of α

is defined by α = [a0, a1, . . . , ah, αh+1]. It follows from the correspondence
that

α ←→
(

a0 1
1 0

)(
a1 1
1 0

)
· · ·

(
ah 1
1 0

)(
αh+1 1

1 0

)

=
(

xh xh−1

yh yh−1

)(
αh+1 1

1 0

)
←→ xhαh+1 + xh−1

yhαh+1 + yh−1
.

That is, we have

α =
xhαh+1 + xh−1

yhαh+1 + yh−1
, and so αh+1 = −yh−1α− xh−1

yhα− xh
.

Recalling that x−1 = 1, y−1 = 0 because an empty matrix product is the
identity matrix, we obtain

(−1)h+1α1α2 · · ·αh+1 = (yhα− xh)−1. (2)

Example 2. Indeed, set δ =
√

61 and let δ denote its conjugate, −√61.
The continued fraction expansion of δ commences

δ = 7− ( δ + 7)/1

δ1 = (δ + 7)/12 = 1− ( δ + 5)/12

δ2 = (δ + 5)/3 = 4− ( δ + 7)/3

δ3 = (δ + 7)/4 = 3− ( δ + 5)/4.

Note, in part to set notation, that a typical line in this tableau is

δh = (δ + Ph)/Qh = ah − ( δ + Ph+1)/Qh, (3)

where
Ph + Ph+1 + (δ + δ ) = ahQh and

−QhQh+1 = δδ + (δ + δ )Ph + P 2
h .

(4)
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Thus, by (2) and (4),

x2
h − 61y2

h = Norm(xh − δyh)

= Norm(δ1δ2 · · · δh+1) = (−1)h+1Qh+1.
(5)

One can, by (3) and (4), readily confirm that the continued fraction
expansion of δ is eventually periodic. Indeed, by induction one notices
that both

0 < 2Ph+1 + (δ + δ) < δ − δ and 0 < Qh < δ − δ. (6)

Thus the box principle guarantees periodicity.
Moreover, conjugation is an involution on the tableau (this is why

I denote the remainders in the manner I do), turning the tableau upside
down. At the cost of replacing δ0 by δ +7 at line h = 0 and continuing the
expansion to see the additional symmetry at lines h = 5 and 6 (see Ex-
ample 3) we could both again have proved periodicity and have confirmed
that the preperiod is just the line h = 0.

Suppose, more generally, that ω2− tω +n = 0 and that ω is the larger
real zero. Then our remarks apply without essential change to ω in place
of
√

61. In the function field case, with ω replaced by Y (X) and degX Y =
g + 1, the cited inequalities (6) become deg Qh ≤ g and deg Ph+1 = g + 1.
Now, however, the box principle does not apply (unless the base field is
finite) and periodicity is at best happenstance. Nonetheless, if periodicity
happens to happen then the period will indeed commence no later than at
line 1.

The issue of periodicity is encapsulated by the following remark which
emphasises that periodicity coincides with the existence of units.

Proposition 1. Suppose that x and y are positive integers satisfying

x2 − txy + ny2 = ±1. Then the decomposition

N =
(

x −ny

y x− ty

)
=

(
b0 1
1 0

)(
b1 1
1 0

)
· · ·

(
br 1
1 0

)(
0 1
1 0

)

in positive integers b0, b1, . . . , br entails that

ω =
[
b0, b1, . . . , br−1, br, 0

]
=

[
b0, b1, . . . , br−1, br + b0

]

for some ω satisfying ω2 − tω + n = 0.
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Proof. Consider the periodic continued fraction

[
b0, b1, . . . , br, 0

]
= γ, say.

Thus γ = [b0, b1, . . . , br, 0, γ]. By the matrix correspondence we have

γ ←→ N

(
γ 1
1 0

)
=

(
xγ − ny x

yγ + x− ty y

)
so γ =

xγ − ny

yγ + x− ty
.

But this is y(γ2 − tγ + n) = 0. Hence y 6= 0 confirms our claim. ¤

Note here that x/y = [b0, b1, . . . , br−1] provides the unit x−ωy. More-
over, the symmetry of the matrix

N

(
t 1
1 0

)
=

(−ny + tx x

x y

)

confirms that the word [b0, b1, . . . , br−1, br + t] is a palindrome, again ex-
plaining the symmetry under conjugation to which we alluded above.

Example 3. The expansion of δ =
√

61 continues with the lines

δ4 = (δ + 5)/9 = 1− ( δ + 4)/9

δ5 = (δ + 4)/5 = 2− ( δ + 6)/5

δ6 = (δ + 6)/5 = 2− ( δ + 4)/5

with Q5 = Q6 signalling the symmetry. Notice that in this case the period
length r = 11 is odd (equivalently, the fundamental unit of Z

[√
61

]
has

norm −1).
For a case r = 2s, even, the symmetry is given by the line

ωs = (ω + Ps)/Qs = as − (ω + Ps)/Qs,

that is, by Ps+1 = Ps. We have Qs | (2Ps + t). In this ‘ambiguous’
case, that is equivalent to Qs also dividing the discriminant t2 − 4n of the
quadratic order Z[ω].
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3. Quadratic integers
with partly prescribed expansion

Theorem 2. Suppose that ω2− tω +n = 0 and its continued fraction

expansion is

ω = [A, a1, a2, . . . , ah, (ω + Ph+1)/Qh+1].

Set P = Ph+1, Q = Qh+1, and
(

a1 1
1 0

)(
a2 1
1 0

)
· · ·

(
ah 1
1 0

)
=

(
p p′

q q′

)
.

Then both

p(P 2 + tP + n) + p′Q(A + P ) = −q′Q,

p(A2 − tA + n) + q(A + P ) = −q′Q.

Proof. The data is equivalent to
(

A 1
1 0

)(
p p′

q q′

)(
1 P

0 Q

)
=

(
x −ny

y x− ty

)

=
(

Ap + q Ap′ + q′

p p′

)(
1 P

0 Q

)

=
(

Ap + q P (Ap + q) + Q(Ap′ + q′)
p Pp + Qp′

)
.

Thus x = Ap + q and y = p and Pp + Qp′ = Ap + q − pt. Hence

p(A− t− P )− p′Q = −q

p(PA + n) + p′QA = −qP − q′Q.
(7)

Strategic additions of multiples of the first equation to the second provides
the allegation. ¤

3.1. The classical result. Specifically, if h = r− 1 so that we are given
the complete symmetric part of the period of ω, then P = A − t, Q = 1
and the identities become

Np− Tq = −q′ with N = Norm(ω −A) and T = Trace (ω −A).
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Because pq′ − p′q = (−1)r−1, we know immediately that the general solu-
tion for the integers N and T is

N = (−1)r(q′2 − Lq) and T = (−1)r(p′q′ − Lp), (8)

where L is an arbitrary integer. The latter equation congenially reports
that

2A = t− (−1)r(p′q′ − Lp).

Thus if p′ and q′ both are odd while Lp is even then t must be taken odd;
say t = 1 as in ω = 1

2(1 +
√

D ); here D = T 2 − 4N . In all other cases
one may take t = 0 and obtain ω the square root

√
D of an integer, not

a square; then 4D = T 2 − 4N . In either case, of course, D = D(L) is a
polynomial quadratic in the integer parameter L. Distinguishing the cases
brings difficulties, see for example [5].

In the function field case this parity matter is no issue, unless the
characteristic is 2 where we see that then t = p′q′+Lp, with L an arbitrary
polynomial, gives us all possible discriminants t2 − 4n = t2.

3.2. The general result. We recall that pq′ − p′q = (−1)h and that
(P 2 + tP + n) = −QhQ := −Q′Q. Thus we have the two general solutions

P 2+ tP + n = (−1)h+1Q(q′2 −K1p
′) − (A +P )= (−1)h+1(qq′−K1p),

A2− tA + n = (−1)h+1(q′2Q−K2q) − (A +P )= (−1)h+1(p′q′Q−K2p),

where K1 and K2 denote arbitrary integers. Set kq′ = K =: K2 −K1.
The dexter pair of equations is Kp = q′(p′Q−q). Indeed q′ does divide

K and also q + kp ≡ 0 (mod p′), showing that K is fixed modulo p′q′. In
fact, because pq′ = (−1)h + p′q, we have k ≡ (−1)h+1qq′ (mod p′). Thus,
for integers L,

(−1)h+1k = qq′ − Lp′ and then (−1)h+1Q = q2 − Lp; (9)

and L = q′Q − kq. Note that (9) in any case is immediate from (7) at
page 486 above. Hence, at very first glance surprisingly, knowing Qh+1 as
well as a1, . . . , ah restricts us to just one parameter families of solutions.

The sinister equations and those for A + P , very helpfully yield k =
A− t− P , and therefore, with T = Trace (ω −A), N = Norm(ω −A),

T = (−1)h(K1p− Lp′), N = (−1)h(K1q − Lq′). (10)
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Thus the discriminant t2 − 4n = T 2 − 4N is a quadratic expression in K1

and L.
Note, however, that many choices of K1 and L lead to inadmissible

cases. For instance, we must have t2 − 4n a positive non-square; and Q

positive obviously constrains L.
Additional data, such as a relationship on the quantities P , Q, and

Q′, leads to just a family of polynomials quadratic in one variable as in the
classical case; in that context see Halter-Koch and Pacher [4], which
expands considerably on [10] and [6].

The special case Q = Q′ entails (−1)h+1Q = K1p
′ − q′2. The special

case P = P ′ := Ph is Q | (2P + t); note that 2P + t = (−1)h(2qq′ − Lp′ −
K1p). Again in these cases, the families of discriminants are quadratic
polynomials in the surviving parameter. Conversely, of course, the qua-
dratic polynomials D(L), say, have the property that the period length of√

D(l), l an integer for which D(l) is positive and not a square, is con-
stant for all but possibly several exceptional l. This case is discussed by
Schinzel [14]; see also [13] and note the ‘sleepers’ of [8].

Example 4. Suppose we are given just a1 = 1, a2 = 4; that is: p = 5,
q = 4, p′ = 1, q′ = 1. Thus

P 2 + tP + n = Q(K1 − 1) A + P = 4− 5K1,

A2 − tA + n = 4K2 −Q A + P = Q− 5K2.

The equations on the right yield Q−4 = 5(K2−K1). Subtracting the first
equation on the left from the second gives (A+P )(A−t−P ) = 4K2−QK1.
Substituting for Q this is (K2−K1)(4−5K1), so indeed A−t−P = K2−K1.
Thus if Q = 4 then A− t = P and 2A− t = 4−5K1. The smallest example
then has A− t = 7 with K2 = −2 and so t2 − 4n = 4 · 61.

Example 5. Given a1 = 1, a2 = 4, a3 = 3, a4 = 1, a5 = 2, together
with Q5 = Q6 – so that we are half way in a period of odd length, we have
p = 58, q = 47, p′ = 21, q′ = 17. Thus

−Q′ = 289− 21K1 A + P = 58K1 − 799,

A2 − tA + n = 289Q− 47K2 A + P = 58K2 − 357Q.
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On the right we see that 357Q−799 ≡ 9Q−45 ≡ 0 (mod 58) and only the
smallest example, that with Q = 5, is going to be at all small. Moreover,
if Q = 5 then K2 − K1 = q′K = 17, so k = 1. Recalling that Q′ = Q,
the equation for −Q′ gives K1 = 14, and so K2 = 31. All that amounts to
A + P = 13. As above, we also have (A + P )(A− t− P ), so 2P + t = 12
and 2A− t = 14. We see that t2 − 4n = 4 · 61.

This example is just of the right size reliably to check our formulas just
above at the start of §3.2; we need only that the choice Q = 5 is L = 38,
and then Q = Q′ is K1 = 14.

Example 6. Given a1 = 2 and P = P2 = P3, signalling halfway in
a period of even length, we have p = 2, q = 1, p′ = 1, q′ = 0. Hence
K2 = K1, and (A + P )(A − t − P ) = K1(Q − 1). Since A + P = 2K1

we see that A − t − P = (Q − 1)/2 and Q is odd. Thus the condition
Q | (2P + t) is 4K1 ≡ −1 (mod Q). We obtain a family of possible
discriminants controlled by one near arbitrary integer parameter and by
(2P + t)/Q.

4. Function fields

We will apply Theorem 2 in function fields (with base field not of
characteristic two) to determine polynomials of even degree whose square
root has a periodic continued fraction expansion defined over the base
field. We first look at quartic polynomials D(X) = A2 + 4v(X + w) and,
as example, first consider the case

√
D =

[
A, B,C, E, C, B, 2A

]

with B, C, and E of degree 1, and A of course of degree 2. Note here that
the regulator, namely the degree of the unit, or, equivalently, the sum of
the degrees of the partial quotients comprising the period, is m = 7.

In order to apply the classical result we must first compute
(

B 1
1 0

) (
C 1
1 0

)(
E 1
1 0

)(
C 1
1 0

)(
B 1
1 0

)

=
(

BCECB + ECB + 2BCB + BCE + 2B + E BCEC + EC + 2BC + 1
CECB + 2CB + CE + 1 CEC + 2C

)
.
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Next we write say B = b(X+β), C = c(X+γ), and E = e(X+ε), allowing
us explicitly to detail the polynomials p, q = p′, and q′ appearing in the
proof of Theorem 2. In particular, we notice that deg p = 5, deg q = 4,
and deg q′ = 3. We then endeavour to find A.

Indeed, by Theorem 2 we know that 2A = Kp− qq′ (noting that here
t = 0 and h = 5); in principle K denotes an arbitrary polynomial.

However, we require deg D = 4 and, therefore, deg A = 2. Because
deg qq′ = 7 and deg p = 5 it follows that K must be of degree 2. Thus
we detail Kp − qq′, say with K = kX2 + k′X + k′′, and set the leading
coefficients of 2A, those of X7, X6, . . . , and X3, equal to zero.

Note that there are a total of 9 unknowns k, . . . , b, β, . . . , thus far
controlled by the 5 conditions ensuring that A is of degree just 2.

But we can tame D(X), and hence A(X), considerably further. First,
it loses no generality to divide by the leading coefficient of D (this must
be a square because A is defined over the base field) and, thus, to suppose
D is monic. Second, we may translate X by a constant, thus fixing the
coefficient of X3 of D (and hence the coefficient of X of A), say to 0. That
leaves two degrees of freedom. Third, we may dilate X, replacing it by
a nonzero multiple, and then divide by the new leading coefficient; one
finds that for quartics such a dilation reduces the number of free variables
by one in all but the cases m = 2 and m = 3. From related work [12] it
happens I know that a congenial dilation is that yielding c = 2.

All that reduces the degrees of freedom to just one. We therefore
should find at most a one parameter family of possibilities for A(X) =
X2 + u, say, thus for D, and hence for each of the already mentioned
‘unknowns’.

4.1. The classical result in action. It would be neat to apply the
classical result to the example but, frankly, the hard yakka1 involved seems
inappropriate here, so we’ll retreat to the case m = 5 and leave it to the
reader to check that there p = BCB + 2B, q = p′ = CB + 1, and q′ = B,
and that mutatis mutandis we will there too find a one parameter family
of continued fractions; in the case m = 5 we will need deg K = 0 and will
set K = k.

1yakka: work [Australian Aboriginal].
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For m = 5, when we review the coefficients of 2A(X) = 2(X2 + u) =
Kp− qq′ we find that

X3 : kb2c− bc2 which vanishes, so kb = c;

X2 : kb2c(2β + γ)− b2c(β + 2γ) = bc2(β − γ);

X : kb2c(2βγ + β2) + 2kb− bc2(2βγ + γ2)− c = bc2(β − γ)(β + γ) + c;

1 : kb2cβ2γ + 2kbβ − bc2βγ2 − cγ = bc2(β − γ)βγ + c(2β − γ).

Just so, it will be convenient to check the consistency of our solution by
noting that the coefficients of Kq − q′2 = D −A2 = R, say, are given by

X2 : kbc− c2 which must vanish, so kb = c;

X : kbc(β + γ)− 2c2γ = c2(β − γ);

1 : kbcβγ + k − c2γ2 = c2(β − γ)γ + k.

Our normalisation A = X2+u gives bc2(β−γ)= 2, and then 2(β+γ)+c =0.
Dilating X by the ratio −(β + γ) is equivalent to taking β + γ = −1. If,
further, we choose to write β− γ = s, then β = (s− 1)/2, γ = −(s + 1)/2,
and we obtain 2u = (1−s2)/2+(3s−1), or u = −(s2−6s+1)/4. Because
bc2(β − γ) = 4bs = 2 we have b = 1/2s, c = 2, and k = 4s.

Further, we find that R(X) = 4sX−2s(s+1)+4s = 4sX−2s(s−1).
Thus

Y 2 = D(X) =
(

X2 − 1
4
(s2 − 6s + 1)

)2

+ 4s

(
X − 1

2
(s− 1)

)
(11)

is the family of monic quartic polynomials defined over K = Q(s) and with
zero trace so that the function field K(X,Y ) has a unit of regulator 5.

One should promptly check such an allegation. Indeed, we find that

Y =

[
X2 − 1

4
(s2 − 6s + 1),

(
X +

1
2
(s− 1)

)
/2s

2
(

X − 1
2
(s + 1)

)
,

(
X +

1
2
(s− 1)

)
/2s, 2

(
X2 − 1

4
(s2 − 6s + 1)

) ]
.
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This computation provides the reminder that, of course, s = 0 is not
admissible because, if s = 0, then D is a square.

4.2. The generalised result in action. Notwithstanding this success
of the classical result, the case m = 7 already seems too painful for any
other than a willing and energetic student. Our generalisation should
however at least halve the pain and, it is to be hoped, more than double
the willingness.

Recall we suppose Y 2 = D(X) = (X2 + u)2 + 4v(X + w) = A2 + R.
In applying the new result we first compute just

(
B 1
1 0

)(
C 1
1 0

)
=

(
BC + 1 B

C 1

)
=

(
p p′

q q′

)

so p = BC +1, p′ = B, q = C, q′ = 1 and note that Q | (2P + t). Checking
degrees in the equations at §3.2 we see the Ki are constants ki, and as
remarked, we obtain A− t−P = k2−k1 = k, say, (BC +1)k = (BQ−C),
A + P = C − k1(BC + 1).

Comparing coefficients in that last equation yields

X2 : 2 = −k1bc

X : 0 = c− k1bc(β + γ) = c + 2(β + γ),

the latter by normalisation whereby A, and so also P , has zero trace. By
dilation we may choose c = 2 obtaining k1b = −1 and β + γ = −1.

We note that E is the integer part of (Y + P )/Q. Hence, because
D(X) is monic and has zero trace, necessarily Q = 2(X − ε)/e. Thus
(BC + 1)k = (BQ− C) alleges that

X2 : kbc = 2b/e, so 2 = kce;

X : kbc(β + γ) = 2b(β − ε)/e− c or kb(γ + ε) = −1;

1 : kbcβγ + k = −2bβε/e− cγ or kbcβ(γ + ε) = −k − cγ = −cβ,

and so c(β − γ) = k.

The equation −Q′ = (−1)h+1(q′2 − K1p
′) contains no new information

other than for the reminder that in fact C = c(X+γ) entails Q′=2(X−γ)/c.
Just so the equation for A2 − tA + n simply gives −R.
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However, Q = 2(X − ε)/e divides 2P + t = −k + C − k1BC − k1 says
that −k+c(X +γ)−k1bc(X2+(β+γ)X +βγ)−k1 has ε as a zero. That is

−k1bcε
2 = k − cγ + k1bcβγ + k1 so 2ε2 = k − (2γ + 2βγ − k1).

Subtracting 2γ2 from each side of this equation we get

2(ε2 − γ2) = 2(ε− γ)(ε + γ) = k − 2γ − 2γ(β + γ) + k1 = k + k1.

Set ε + γ = −s. Notice that kbs = 1 and k1b = −1 gives k1 = −ks. We
have

β + γ = −1 or 2(β + γ)s = −2s

ε + γ = −s 2(ε + γ)s = −2s2

2(β − γ) = k 2(β − γ)s = ks

2(ε− γ)s = k(s− 1) 2(ε− γ)s = k(s− 1).

It is now straightforward to solve the various equations and to obtain

B =
(

X +
1
2
(s2 − s− 1)

)
/2s2(s− 1) C = 2

(
X − 1

2
(s2 − s + 1)

)

E =
(

X +
1
2
(s2 − 3s + 1)

)
/2s(s− 1),

as well as k = 2s(s − 1). As remarked, we obtain A from 2A − t =
k + C − k1BC − k1 and v(X + w) as Q − (k + k1)C. Thus Y 2 = (X2 +
u)2 + 4v(X + w) = A2 + R with

A = X2 − 1
4
(s4 − 6s3 + 3s2 + 2s + 1) and

R = 4s2(s− 1)
(

X − 1
2
(s2 − s− 1)

)
.

On our checking, a direct computation of the continued fraction expansion
of Y so given indeed yields the partial quotients predicted at (12) above.
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5. Comments

5.1. Schinzel’s theorem. Andrzej Schinzel [14] shows that if a poly-
nomial D(X) taking integer values at integers l has the property that
the length of the period of the continued fraction expansion of

√
D(l)

is bounded as l → ∞ then (a) the function field Q(X,Y ) – where Y =√
D(X) – contains non-trivial units; equivalently, the function field con-

tinued fraction expansion of Y is periodic, and (b) some nontrivial units
a(X) + b(X)Y in Q(X, Y ) have both a and b in Z[X]. If deg D = 2, say
D(X) = A2X2 + BX + C, then the function field condition (a) is trivial,
but the arithmetic condition (b) entails that the discriminant (B2−4A2C)
divides 4(2A2, B)2.

Section 4 provides examples of classes of polynomials of degree 4 sat-
isfying the function field condition (a). Roger Patterson, see [7], has
carried through the interesting exercise of finding which values of the pa-
rameters lead to (b) also being satisfied; see also comments in [8].

5.2. Explicit continued fraction expansion. I have learned how to ex-
pand explicitly the general quartic (and sextic) polynomial, that is, I found
nontrivial recursion relations on the complete quotients; see [11]. In prin-
ciple, at any rate, those techniques generalise to higher genus cases. Thus,
fortunately perhaps, the ideas of §4 are mostly an amusing diversion rather
than a necessary method.

5.3. Short periods and long periods. In principle one is interested in
relatively long periods, in the hope of obtaining insight into Gauss’s con-
jecture to the effect that the majority of real quadratic number fields with
prime discriminant have class number one. In that context, short periods,
as discussed here only give one a view of the enemy. Nonetheless, as won-
derfully exemplified by recent work of András Biró, [1], [2], the short
case raises fascinating issues. The polynomials X2 +4 and 4X2 +1 satisfy
Schinzel’s conditions so we can write the corresponding numerical periods
explicitly. That gives, as Biró ingeniously shows, sufficient handle on the
matter after all to determine all cases X = l that yield class number one.
But, for example, the corresponding class number two problems appear
yet less accessible because as l varies one seems not to have a bound on
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the period length of expansions of reduced elements not from the principal
class.

It is not so much the length of the period as the size of the regulator
(the logarithm of the absolute value of the fundamental unit) that matters.
Discriminants D belonging to families alluded to in this paper have regu-
lator O(log D) only. In fact, see [7, 8], it seems that if one has a formula
for the units of a parametrised family then the regulators are never more
than O

(
(log D)2

)
.

References
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