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The Lebesgue function for Lagrange interpolation
on the augmented Chebyshev nodes

By SIMON J. SMITH (Bendigo)

Abstract. Given f ∈ C[−1, 1] and n points (nodes) in [−1, 1], the well-
known Lagrange interpolation polynomial is the polynomial of minimum degree
which agrees with f at each of the nodes. Properties of the Lebesgue function
and Lebesgue constant associated with Lagrange interpolation on the Chebyshev
nodes (the zeros of the nth Chebyshev polynomial of the first kind) have been
studied by several authors. In this paper a study is made of Lagrange interpolation
on the Chebyshev nodes augmented with −1 and 1. It is shown that, although
the convergence properties of interpolation polynomials based on the Chebyshev
and augmented Chebyshev nodes are similar, there are considerable differences
in the behaviour of the Lebesgue function. In particular, the local maxima of the
Lebesgue function for the augmented nodes are strictly increasing from the outside
towards the middle of [−1, 1], whereas they are decreasing for the unaugmented
nodes, and the Lebesgue constant for the augmented nodes is essentially double
that for the unaugmented nodes.

1. Introduction

Suppose f is a continuous real-valued function defined on the interval
[−1, 1], and let

X = {xk,n : k = 1, 2, . . . , n; n = 1, 2, 3, . . .}

Mathematics Subject Classification: 41A05, 41A10.
Key words and phrases: Lagrange interpolation, Lebesgue function, Lebesgue constant,
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be an infinite triangular matrix such that, for all n,

1 ≥ x1,n > x2,n > . . . > xn,n ≥ −1.

The well-known Lagrange interpolation polynomial of f is the polynomial
Ln(X, f)(x) = Ln(X, f, x) of degree at most n − 1 which satisfies

Ln(X, f, xk,n) = f(xk,n), 1 ≤ k ≤ n.

It can be expressed as

Ln(X, f, x) =
n∑

k=1

f(xk,n)�k,n(X,x),

where the fundamental polynomials �k,n(X,x) are the unique polynomials
of degree at most n − 1 which satisfy

�k,n(X,xj,n) = δk,j, 1 ≤ k, j ≤ n,

where δk,j denotes the Kronecker delta.
Central to the study of the convergence properties of Lagrange inter-

polation polynomials is the behaviour of the Lebesgue functions

λn(X,x) =
n∑

k=1

|�k,n(X,x)| (1)

and the Lebesgue constants

Λn(X) = max
−1≤x≤1

λn(X,x)

(see Rivlin [6]). For example ([6, Section 4.1]), if the modulus of conti-
nuity ω(δ; f) of f is defined by

ω(δ; f) = max {|f(s) − f(t)| : −1 ≤ s, t ≤ 1, |s − t| ≤ δ} ,

the polynomials Ln(X, f, x) converge uniformly to f as n → ∞ if

lim
n→∞Λn(X)ω(1/n; f) = 0. (2)

As shown by Luttmann and Rivlin [5], for n ≥ 3 the Lebesgue
function λn(X,x) is a piecewise polynomial that satisfies λn(X,x) ≥ 1,
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with equality if and only if x = xk,n (k = 1, 2, . . . , n). Between each pair of
consecutive nodes, λn(X,x) is a polynomial with a single maximum, while
in (x1,n,∞) it is a strictly increasing, convex polynomial, and in (−∞, xn,n)
it is a strictly decreasing, convex polynomial. Further, if the nodes are
symmetrically arranged about 0 (i.e. xk,n = −xn−k+1,n for 1 ≤ k ≤ n),
then λn(X,x) = λn(X,−x), x ∈ [−1, 1].

Properties of λn(X,x) have been studied extensively for some partic-
ular choices of X. One such choice is the matrix of Chebyshev nodes

T =
{

xk,n = cos
(

2k − 1
2n

π

)
: k = 1, 2, . . . , n; n = 1, 2, 3, . . .

}
,

where, for fixed n, the xk,n are the zeros of the nth Chebyshev polynomial
of the first kind, Tn(x) = cos(n arccos x), −1 ≤ x ≤ 1. A reason for the
focus on the Chebyshev nodes is that whereas Λn(X)> (2/π) log n + 1/2
for any X, it is known that Λn(T ) ≤ (2/π) log n + 1 (see Rivlin [7, Sec-
tion 1.3]). Thus the Chebyshev nodes are a simple node system that is
near-optimal in terms of both its Lebesgue constants and, by (2), the con-
vergence properties of its interpolation polynomials.

For the Chebyshev nodes, Ehlich and Zeller [4] showed that

Λn(T ) = λn(T,±1) =
1
n

n∑
k=1

cot
(2k − 1)π

4n
, (3)

from which representation the asymptotic result

Λn(T ) =
2
π

log n +
2
π

(
γ + log

8
π

)
+ O

(
1
n2

)
, as n → ∞, (4)

can be obtained, where γ denotes Euler’s constant. (In fact, much more
precise results than (4) are known — see the survey paper by Brutman

[3] and the references therein.) Brutman [2] made a careful study of the
behaviour of λn(T, x) on [−1, 1], and showed its local maxima are strictly
decreasing from the outside towards the middle of the interval, and that
the smallest local maximum, Λn(T ), satisfies

Λn(T ) =
2
π

log n +
2
π

(
γ + log

4
π

)
+ o(1), as n → ∞. (5)
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This asymptotic result was obtained from the observations that if n is
even, then

Λn(T ) = λn(T, 0) = Λn/2(T ),

while if n is odd, then

Λn(T ) ∼ λn(T, sin π/(2n)), as n → ∞.

Our aim in this paper is to study Lagrange interpolation on the Cheby-
shev nodes augmented with the endpoints −1 and 1. Denote the aug-
mented nodes by

Ta = {xk,n+2 : k = 0, 1, . . . , n + 1; n = 1, 2, 3, . . .},

where 


x0,n+2 = 1, xn+1,n+2 = −1,

xk,n+2 = cos
(

2k − 1
2n

π

)
, 1 ≤ k ≤ n.

(6)

Now, polynomial interpolation on Ta has been studied by several authors,
but almost exclusively in the context of Hermite–Fejér interpolation, where
the polynomial is required to not only interpolate the function at each
node, but also to have zero derivative at each node. In a series of papers
in the 1960s, D. L. Berman showed that adding ±1 to the Chebyshev
nodes may completely change the convergence behaviour of Hermite–Fejér
polynomials. For instance, in [1, Theorem 2], Berman showed that the
sequence of Hermite–Fejér interpolation polynomials to f(x) = x2, based
on the nodes Ta, diverges as n → ∞ for all x ∈ (−1, 1), even though the
corresponding sequence of polynomials based on the nodes T converges
uniformly to f on [−1, 1]. The behaviour of the Lebesgue function for
Hermite–Fejér interpolation on Ta was discussed by Smith [9], who showed,
for example, that the addition of ±1 to the node system T causes the
Lebesgue constant to increase dramatically, from 1 to 2n2 + O(1).

In contrast to Hermite–Fejér interpolation, the Lagrange interpolation
process on Ta has received only limited study. This is perhaps due to the
fact that it fails to exhibit the extreme behaviour of the Hermite–Fejér
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process. Indeed, from

Ln+2(Ta, f, x) − Ln(T, f, x) =
Tn(x)

2
[
(1 + x)(f(1) − Ln(T, f, 1))

+(−1)n(1 − x)(f(−1) − Ln(T, f,−1))
]
,

which is verified readily by noting that both sides are polynomials of degree
at most n+1 that agree at the n+2 nodes xk,n+2 (0 ≤ k ≤ n+1), it follows
that if Ln(T, f, x) converges uniformly to f on [−1, 1], then Ln+2(Ta, f, x)
also converges uniformly to f .

0

1

5

–1 1

Figure 1. Graphs of the Lebesgue functions λ9(T, x) (thin line)
and λ11(Ta, x)

We will investigate properties of the Lebesgue function λn+2(Ta, x).
Now, Figure 1 suggests that in contrast to the behaviour of λn(T, x), the
local maxima of λn+2(Ta, x) increase from the outside towards the middle
of [−1, 1]. Further, the graphs suggest that the magnitude of Λn+2(Ta) is
considerably greater than that of Λn(T ). These observations are confirmed
by the following two theorems, which will be proved in Sections 2 and 3.
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Theorem 1. Let Λj
n+2(Ta) denote the local maximum value of the

Lebesgue function λn+2(Ta, x) in the interval (xj+1, xj), and let [n/2] de-

note the integer part of n/2. Then

Λj
n+2(Ta) < Λj+1

n+2(Ta), j = 0, 1, . . . , [n/2] − 1.

Theorem 2. The Lebesgue constant Λn+2(Ta) has the asymptotic

expansion

Λn+2(Ta) =
4
π

log n +
4
π

(
γ + log

4
π

)
+ 1 + O

(
1
n2

)
, as n → ∞. (7)

2. Proof of Theorem 1

For simplicity, write xk for xk,n+2, where the xk,n+2 are given by (6).
By using basic properties of the Chebyshev polynomial Tn(x) (see Rivlin

[7, Chapter 1]), it is easily verified that the fundamental polynomials for
Lagrange interpolation on the nodes Ta are given by


�0,n+2(Ta, x) =
1 + x

2
Tn(x), �n+1,n+2(Ta, x) = (−1)n

1 − x

2
Tn(x),

�k,n+2(Ta, x) =
1−x2

1−x2
k

�k,n(T, x) =(−1)k−1 (1 − x2)

n
√

1−x2
k

Tn(x)
x−xk

, 1 ≤ k ≤ n.

Therefore, if xj+1 < x < xj , it follows from (1) and (−1)jTn(x) > 0 that
the Lebesgue function is

λn+2(Ta, x) = (−1)jTn(x)

[
1 −

j∑
k=1

(1 − x2)

n
√

1 − x2
k

1
x − xk

+
n∑

k=j+1

(1 − x2)

n
√

1 − x2
k

1
x − xk

]
.

(8)

To simplify notation, we write λn+2(Ta, x) as λn+2(x), and define

θ0 = 0, θn+1 = π, θk =
2k − 1

2n
π (1 ≤ k ≤ n).
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Because of the symmetry of the nodes about 0, the theorem follows imme-
diately from the following lemma.

Lemma 3. Suppose x = cos θ where θj < θ < θj+1 and 0 ≤ j ≤
[n/2] − 1. Let x∗ = cos θ∗, where θ∗ = θ + π/n. Then

λn+2(x∗) − λn+2(x) > 0.

Proof. Since Tn(x∗) = −Tn(x), it follows from (8) that

n|Tn(x)|−1 [λn+2(x∗) − λn+2(x)] =
n∑

k=j+2

(1 − x2∗)√
1 − x2

k

1
x∗ − xk

−
n∑

k=j+1

(1 − x2)√
1 − x2

k

1
x − xk

+
j+1∑
k=1

(1 − x2∗)√
1 − x2

k

1
xk − x∗

−
j∑

k=1

(1 − x2)√
1 − x2

k

1
xk − x

.

(9)

Consider the case when n = 2m is even. Since xk = −xn−k+1, (9) can be
written as

n

2
|Tn(x)|−1 [λn+2(x∗) − λn+2(x)] =

m∑
k=j+2

x∗√
1 − x2

k

1 − x2∗
x2∗ − x2

k

+
j+1∑
k=1

xk√
1 − x2

k

1 − x2∗
x2

k − x2∗
−

m∑
k=j+1

x√
1 − x2

k

1 − x2

x2 − x2
k

−
j∑

k=1

xk√
1 − x2

k

1 − x2

x2
k − x2

.

On using the representation

1 − a2

a2 − x2
k

= −1 +
1 − x2

k

a2 − x2
k

(10)

in each summand, we obtain

f(x) := n|Tn(x)|−1 [λn+2(x∗) − λn+2(x)]
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− 2x csc θj+1 − 2(x − x∗)
m∑

k=j+2

csc θk

= 2cot θj+1 +
j+1∑
k=1

sin 2θk

x2
k − x2∗

−
j∑

k=1

sin 2θk

x2
k − x2

+ 2x∗
m∑

k=j+2

sin θk

x2∗−x2
k

− 2x
m∑

k=j+1

sin θk

x2 − x2
k

. (11)

Since x > x∗, the lemma will be established for even n if it can be shown
that f(x) > 0.

Now, on using the trigonometric identity

sin 2A
cos2A − cos2B

= cot(B − A) − cot(B + A), (12)

and noting θ∗ − θk+1 = θ − θk for 1 ≤ k ≤ n − 1, we obtain

j+1∑
k=2

sin 2θk

x2
k − x2∗

−
j∑

k=1

sin 2θk

x2
k − x2

=
j∑

k=1

(
sin 2θk+1

cos2θk+1 − cos2 θ∗
− sin 2θk

cos2θk − cos2θ

)

=
j∑

k=1

(cot(θ + θk) − cot(θ∗ + θk+1))

= cot(θ + θ1) + cot(θ + θ2)

− cot(θ + θj+1) − cot(θ + θj+2).

Therefore, because θ∗ − θ1 = θ + θ1,

j+1∑
k=1

sin 2θk

x2
k − x2∗

−
j∑

k=1

sin 2θk

x2
k − x2

= 2cot(θ + θ1)

− cot(θ + θj+1) − cot(θ + θj+2).

(13)

Similarly, from

2 cos A sin B

cos2A − cos2B
= csc(B − A) + csc(B + A),
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and θm + θ∗ = π − (θm − θ), it follows that

2x∗
m∑

k=j+2

sin θk

x2∗ − x2
k

− 2x
m∑

k=j+1

sin θk

x2 − x2
k

= − csc(θ + θj+1)

− csc(θ + θj+2).

(14)

Substituting (13) and (14) into (11), and using cotA + csc A = cot A/2,
gives

f(x) = 2 [cot θj+1 + cot(θ + θ1)] −
[
cot

θ + θj+1

2
+ cot

θ + θj+2

2

]
. (15)

To show this is positive, we employ

cot A + cot B =
sin(A + B)
sin A sin B

=
2 sin(A + B)

cos(A − B) − cos(A + B)

and θj+2 = θj+1 + 2θ1, so that (15) can be written as

f(x) =
sin(θj+1+θ + θ1) [2 cos θ1− cos(θj+1+θ + θ1)− cos(θj+1−θ − θ1)]

2 sin θj+1 sin(θ + θ1) sin θ+θj+1

2 sin θ+θj+2

2

.

All the sine terms in this expression for f(x) are positive, and

2 cos θ1 − cos(θj+1 + θ + θ1) − cos(θj+1 − θ − θ1)

= 2 (cos θ1 − cos θj+1 cos(θ + θ1)) ≥ 2 (cos θ1 − cos θ1 cos(θ + θ1)) > 0.

Thus the lemma is established if n is even.
We next consider the case when n = 2m+1 is odd. Similar calculations

to those for the even case can be made (note that xm+1 = 0), with the
equivalent expression to (11) being

g(x) := n|Tn(x)|−1 [λn+2(x∗) − λn+2(x)] − 2x csc θj+1

− 2(x − x∗)
m∑

k=j+2

csc θk = 2cot θj+1 +
j+1∑
k=1

sin 2θk

x2
k − x2∗

−
j∑

k=1

sin 2θk

x2
k − x2

+ 2x∗
m∑

k=j+2

sin θk

x2∗ − x2
k

− 2x
m∑

k=j+1

sin θk

x2 − x2
k
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+
1 − x2∗

x∗
− 1 − x2

x
.

Observe that the lemma will be established for odd n if it can be shown
that g(x) > 0.

Now, identity (13) remains valid for odd n, while from θm = π/2−π/n,
it follows that the equivalent expression to (14) is

2x∗
m∑

k=j+2

sin θk

x2∗ − x2
k

− 2x
m∑

k=j+1

sin θk

x2 − x2
k

= − csc(θ + θj+1) − csc(θ + θj+2) +
1
x
− 1

x∗
.

Therefore,

g(x) = 2 [cot θj+1 + cot(θ + θ1)]

−
[
cot

θ + θj+1

2
+ cot

θ + θj+2

2

]
+ (x − x∗),

which is positive by the same considerations as for the even case, and
x > x∗. Thus the lemma is proved. �

3. Proof of Theorem 2

If n is even, then by Theorem 1 and symmetry considerations, Λn+2(Ta)
= λn+2(Ta, 0), and so, by (8),

Λn+2(Ta) = 1 +
2
n

n/2∑
k=1

(cot θk + tan θk)

= 1 +
4
n

n/2∑
k=1

cot
(2k − 1)π

2n
= 1 + 2Λn/2(T ),

where the final equality is a consequence of (3). The result (7) then follows
from (4).
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If n=2m+1 is odd, then by Theorem 1, Λn+2(Ta) = max
0<x<xm

λn+2(Ta, x).

Now, if 0 < x < xm and x = cos θ, then by (8), (10) and (12),

λn+2(Ta, x) = (−1)mTn(x)

[
1 +

2
n

m∑
k=1

cot θk

+
1
n

m∑
k=1

[cot(θ − θk) − cot(θ + θk)] +
1 − x2

nx

]
.

(16)

Define φm = mπ/(2m+1). Then, on choosing x = cos φm = sin(π/(2n)) =
sin θ1 in (16), we obtain

λn+2(Ta, cos φm) = 1 +
4
n

m∑
k=1

cot θk − 1
n

cot θ1 +
cos2 θ1

n sin θ1

= 1 +
4
n

m∑
k=1

cot θk + O

(
1
n2

)
.

(17)

To obtain an asymptotic expression for n−1
∑m

k=1 cot θk, we adapt the
methods of Shivakumar and Wong [8] that were used to find a complete
asymptotic expansion of (3). From the expansion

cot z =
1
z
−

∞∑
r=1

22r|B2r|z
2r−1

(2r)!
(0 < |z| < π), (18)

where the B2r are Bernoulli numbers, it follows that

1
2m + 1

m∑
k=1

cot
(

(2k − 1)π
2(2m + 1)

)

=
2
π

m∑
k=1

1
2k − 1

− 2
π

∞∑
r=1

|B2r|
(2r)!

π2r

(2m + 1)2r

m∑
k=1

(2k − 1)2r−1.

Now, it is well-known that

m∑
k=1

1
2k − 1

=
1
2

log(4m) +
γ

2
+ O

(
1

m2

)
.
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Also, as derived by Shivakumar and Wong using the Euler–Maclaurin for-
mula,

m∑
k=1

(2k − 1)2r−1 =
(2m)2r

4r
+ O

(
r(2m)2r−2

)
.

Further, from the Maclaurin series expansion of (1 + x)−2r for x > 0, it
follows that (

1 +
1

2m

)−2r

= 1 − r

m
+ O

(
r2

m2

)
.

Thus

1
2m + 1

m∑
k=1

cot
(

(2k − 1)π
2(2m + 1)

)

=
1
π

(log(4m) + γ) − 1
2π

∞∑
r=1

|B2r|
r(2r)!

π2r +
1

2πm

∞∑
r=1

|B2r|
(2r)!

π2r + O

(
1

m2

)
.

The two series on the right of this equation can be evaluated by substitut-
ing z = π/2 in (18) and in the series

log sin z = log z −
∞∑

r=1

22r−1|B2r|
r(2r)!

z2r (0 < |z| < π),

which is obtained by integrating (18), so that

1
2m + 1

m∑
k=1

cot
(

(2k − 1)π
2(2m + 1)

)

=
1
π

(log (8m/π) + γ) +
1

2πm
+ O

(
1

m2

)
.

On recalling that n = 2m + 1, we obtain from (17),

Λn+2(Ta) ≥ λn+2(Ta, cos φm)

=
4
π

log n +
4
π

(
γ + log

4
π

)
+ 1 + O

(
1
n2

)
.

(19)

To show that Λn+2(Ta) is equal to λn+2(Ta, cos φm) to within O(1/n2)
terms, we use a method that was employed by Brutman [2] to establish
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(5). Now, it follows from (16) that

λ′
n+2(Ta, cos φm)

=
1
n

[
sec θ1

m∑
k=1

[
csc2(φm − θk) − csc2(φm + θk)

] − csc2 θ1 − 1

]

=
1
n

[
sec θ1

(
csc2 θ1 − 1

) − csc2 θ1 − 1
]

= − 2 + cos θ1

n(1 + cos θ1)
.

(20)

Thus λ′
n+2(Ta, cos φm) < 0, and so Λn+2(Ta) = max0<x<cos φm λn+2(Ta, x).

On noting that T ′′
n (cos φm) = (−1)m+1n2/ cos2 θ1, we obtain, also

from (16),

λ′′
n+2(Ta, cos φm) =

−n2

cos2 θ1

[
1 +

4
n

m∑
k=1

cot θk − cos θ1(1 − cos θ1)
n sin θ1

]

+
2

n cos2 θ1

m∑
k=1

[
cot(φm−θk) csc2(φm−θk)− cot(φm+θk) csc2(φm+θk)

]

+
sin θ1

n cos3 θ1

m∑
k=1

[
csc2(φm − θk) − csc2(φm + θk)

]
+

2
n sin3 θ1

= − 4
n cos2 θ1

m∑
k=1

[
n2 − csc2 θk

]
cot θk − n

cos θ1

[
n

cos θ1
− 1 − cos θ1

sin θ1

]

− 1
n

[
2

cos θ1 sin3 θ1
− 1

cos θ1 sin θ1
− 2

sin3 θ1

]
.

Now, from sin θ > 2θ/π (0 < θ < π/2), it follows that sin θ1 > 1/n, and so
n2 − csc2 θk ≥ n2 − csc2 θ1 > 0. Also from sin θ1 > 1/n, we obtain

n

cos θ1
− 1 − cos θ1

sin θ1
>

n

cos θ1
− n(1 − cos θ1)

=
n

cos θ1

(
1 − cos θ1 + cos2 θ1

)
> 0.

Finally,
2

cos θ1 sin3 θ1
− 1

cos θ1 sin θ1
− 2

sin3 θ1
=

(1 − cos θ1)2

cos θ1 sin3 θ1
> 0.
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On combining these results it follows that λ′′
n+2(Ta, cos φm) < 0.

Now suppose that x∗∈ (0, cos φm) is such that Λn+2(Ta)= λn+2(Ta, x
∗).

We claim that λn+2(Ta, x) is concave on the interval (x∗, cos φm). To see
this, consider the polynomial

p(x) = (−1)mTn(x)

[
1−

m∑
k=1

(1 − x2)

n
√

1 − x2
k

1
x − xk

+
n∑

k=m+1

(1 − x2)

n
√

1 − x2
k

1
x − xk

]
,

which, by (8), agrees with λn+2(Ta, x) on (xm+1, xm). Note that the lead-
ing term in p(x) is (−1)m+122mx2m+2/(2m + 1), and p(xj) = (−1)m−j

for 0 ≤ j ≤ m, p(xj) = (−1)j−m−1 for m + 1 ≤ j ≤ 2m + 2. Thus p

has (at least) m + 1 changes of sign in each of the intervals (xm,∞) and
(x2m+2, xm+1), and so p′ has (at least) m zeros in each of these intervals,
as well as a zero at x∗ ∈ (xm+1, xm). Since p′ has degree 2m + 1, we have,
in fact, identified the location of all its zeros. Hence p′′ has at most one
zero in (x∗, xm), and so, because p′′(x∗) < 0 and p′′(cos φm) < 0, it follows
that p′′(x) < 0 on (x∗, cos φm), as claimed.

To complete the proof, note that from the concavity of λn+2(Ta, x) on
(x∗, cos φm) and (20), it follows that

λn+2(Ta, x
∗) − λn+2(Ta, cos φm) ≤ −λ′

n+2(Ta, cos φm) × (cos φm − x∗)

≤ 2 + cos θ1

n(1 + cos θ1)
cos φm = O

(
1
n2

)
.

The result (7) for odd values of n then follows from (19).
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