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Isotropic Jacobi fields on naturally reductive spaces

By J. C. GONZÁLEZ-DÁVILA (La Laguna) and R. O. SALAZAR (La Laguna)

Abstract. We derive existence results of isotropic Jacobi fields on naturally
reductive spaces and we prove that a naturally reductive space (M, g) of dimension
≤ 5 with the property that all Jacobi fields vanishing at two points are Tr(M, ∇̃)-
isotropic, for some adapted canonical connection ∇̃ and where Tr(M, ∇̃) denotes
the corresponding transvection group, is locally symmetric. Moreover, for the
three-dimensional case (M, g) is locally symmetric if all Jacobi fields vanishing at
two points are isotropic.

1. Introduction

As it is well-known, restrictions of Killing vector fields to geodesics on
a Riemannian manifold are Jacobi fields. In particular, on a homogeneous
Riemannian manifold (M = G/Go, g) with adapted reductive decomposi-
tion g = m⊕go, the restriction of the fundamental vector field X∗ of some
X ∈ g to a geodesic γ(t) starting at the origen o of M , is a Jacobi field
induced by the geodesic variation φ(t, s) = (exp sX)γ(t). When X ∈ go,
the geodesic variation φ is called the isotropic variation of γ induced by
X and the corresponding Jacobi field V = X∗ ◦γ is said to be G-isotropic.
Moreover, if G is the identity component Io(M,g) of the isometry group
I(M,g) of (M,g), the set of all isotropic Jacobi fields along γ – we shall
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say simply isotropic Jacobi fields – coincides with that of the restrictions
of all Killing vector fields to γ which vanish at the origin. It is worthwhile
to note that in some texts, as for example in [18], the term “isotropic” is
used in a broader sense; namely, as Jacobi fields which are restrictions of
arbitrary Killing vector fields.

We focus our attention on naturally reductive homogeneous spaces.
On these reductive coset spaces, the canonical connection ∇̃ [9, I, p. 110]
has the same geodesics as the Levi Civita connection and thus also the
same Jacobi fields. Since its torsion and its curvature are parallel, the
Jacobi equation can then be written as a differential equation with con-
stant coefficients (the differential equation (5.6)) [3], [18]. Moreover, it
leads to the consideration of Jacobi fields by means of naturally reductive
models [17].

It is useful to remark here that, in general, the same homogeneous
Riemannian manifold (M,g) may have more than one naturally reduc-
tive quotient representation G/Go and once G/Go is fixed, more than one
naturally reductive decomposition g = m ⊕ go and thus, more than one
adapted canonical connection ∇̃. So, given a naturally reductive space
(M = G/Go, g) with adapted canonical connection ∇̃, we need to set
some determined naturally reductive quotient representation. We con-
sider the quotient representation of (M,g) in the form M = Tr(M, ∇̃)/K,
where Tr(M, ∇̃) is the transvection group of the affinely connected mani-
fold (M, ∇̃) [10, Chapter I] with isotropic subgroup K isomorphic to the
restricted holonomy group of (M, ∇̃) at the origin. Then, any Tr(M, ∇̃)-
isotropic Jacobi field is G-isotropic and, obviously, it is isotropic.

I. Chavel proved in [3] (see also [4]) that all simply connected normal
Riemannian homogeneous space (M = G/Go, g) of rank one with the
property that all Jacobi fields vanishing at two points are G-isotropic, are
homeomorphic to a rank one symmetric space. In fact, he showed that
the (non-symmetric) rank one normal homogeneous spaces Sp(2)/SU(2)
and SU(5)/(Sp(2) × T ) admit a conjugate point of the origin which is
not isotropically conjugate. Afterwards, W. Ziller in [18] proposed the
following conjecture:

All naturally reductive spaces with the property that all Jacobi fields
vanishing at two points are isotropic are locally symmetric.
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The main purpose of this paper is to examine this conjecture and,
at the same time, to derive existence results of nonzero isotropic and
G-isotropic Jacobi fields on a homogeneous Riemannian manifold (M =
G/Go, g). For naturally reductive spaces, we show that the integral curves
of a G-invariant vector field are characterized as those geodesics without
nonzero G-isotropic Jacobi fields (Proposition 3.6) and moreover, we de-
termine all conjugate points to the origin on these curves (Theorem 5.3).
Then we give a positive answer to the above conjecture when dimM ≤ 5
and the Jacobi fields are considered Tr(M, ∇̃)-isotropic. Moreover, for
the three-dimensional case the conjecture is completely resolved (Theo-
rem 5.7).

The paper is organized as follows: in Section 2 we give some preli-
minaries about the canonical connection adapted to a reductive decom-
position and infinitesimal models. In Section 3, we analize some aspects
related with the existence of isotropic Jacobi fields on homogeneous Rie-
mannian manifolds and in Section 4, on semi-simple symmetric spaces
(Theorem 4.2). Finally, in Section 5 we recall the Jacobi equation for an
adapted canonical connection on naturally reductive spaces and we prove
the already mentioned results.

The authors wish to thank to L. Vanhecke for his useful suggestions
made during the preparation of this paper.

2. Preliminaries

Let (M,g) be an n-dimensional, connected, homogeneous Riemannian
manifold with n ≥ 2. Then (M,g) can be expressed as a coset space
G/Go, where G is a Lie group, which is supposed to be connected, acting
transitively and effectively on M , Go is the isotropy subgroup of G at
some point o ∈ M and g is a G-invariant Riemannian metric on G/Go.
Moreover, there is an Ad(Go)-invariant subspace m of the Lie algebra g

of G such that g = m ⊕ go, go being the Lie algebra of Go. Hence, G/Go

is a reductive homogeneous space (with respect to the given decomposition
g = m ⊕ go). (M,g) is said to be naturally reductive if there exists a
reductive representation M = G/Go, with respect to a decomposition
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g = m ⊕ go, satisfying

〈[X,Y ]m, Z〉 + 〈[X,Z]m, Y 〉 = 0 (2.1)

for all X,Y,Z ∈ m, where [X,Y ]m denotes the m-component of [X,Y ] and
〈 , 〉 is the metric induced by g on m, or equivalently, [X, · ]m : m → m is
skew-symmetric for all X ∈ m. (M,g) is said to be normal homogeneous
if there exists a bi-invariant metric on g whose restriction to m = g⊥o is the
metric 〈 , 〉. In particular, all [X, · ] : g → g are skew-symmetric and thus,
a normal homogeneous metric is also naturally reductive.

For each X ∈ g, denote by X∗ the corresponding fundamental vector
field on M , that is,

X∗
p =

d

dt |t=0
(exp tX)p, p ∈ M.

It is clear that X∗ is a Killing vector field. Under the canonical identi-
fication of m with the tangent space ToM of the origin o, the canonical
connection ∇̃ of (M,g) adapted to the reductive decomposition g = m⊕go

is the unique G-invariant affine connection on M such that for every u ∈ m

and for every vector field X on M , one has ([10])

(∇̃u∗X)o = [u∗,X]o. (2.2)

Let T̃ denote its torsion tensor and R̃ the corresponding curvature ten-
sor defined by the sign convention R̃(X,Y ) = ∇̃[X,Y ] − [∇̃X , ∇̃Y ] and
T̃ (X,Y ) = ∇̃XY −∇̃Y X − [X,Y ], for all X,Y ∈ X(M), the Lie algebra of
smooth vector fields on M . Then, these tensors are given by

T̃o(X,Y ) = −[X,Y ]m R̃o(X,Y ) = ad[X,Y ]go
(2.3)

for X,Y ∈ m, where [X,Y ]go denotes go-component of [X,Y ].
Let k ⊂ go be the subalgebra generated by all projections [X,Y ]go ,

X,Y ∈ m. The subalgebra tr(m) ⊂ g given by tr(m) = m ⊕ k is called
the transvection algebra and the corresponding connected Lie subgroup
Tr(M, ∇̃) of G with Lie algebra tr(m) is said to be the transvection group
of the reductive space (M = G/Go, g) with the fixed canonical connection
∇̃, i.e., of the affinely connected manifold (M, ∇̃) [10, Chapter I]. Taking
into account that the linear isotropy representation of Go in the tangent
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space ToM is faithful, k coincides precisely with the algebra generated by
all curvature transformations R̃(X,Y ) on ToM [10, Proposition I.2].

Next, we introduce the notion of infinitesimal model. Let (m, 〈 , 〉) be
a Euclidean vector space and T̃ and R̃ two tensors on m of type (1, 2) and
(1, 3), respectively. Consider R̃ also as the bilinear map

R̃ : m × m → End(m), (X,Y ) 
→ R̃(X,Y ).

M = (m, T̃ , R̃, 〈 , 〉) is called an infinitesimal model (of a locally homoge-
neous Riemannian manifold) if T̃ and R̃ satisfy

(i) T̃ (X,Y ) = −T̃ (Y,X), R̃(X,Y ) = −R̃(Y,X),

(ii) 〈R̃(X,Y )Z,W 〉 = −〈R̃(X,Y )W,Z〉,
(iii) R̃(X,Y ) · T̃ = R̃(X,Y ) · R̃ = 0,

(iv) S
XY Z

{
R̃(X,Y )Z + T̃ (T̃ (X,Y ), Z)

}
= 0,

(v) S
XY Z

{
R̃(T̃ (X,Y ), Z)

}
= 0

for all X,Y,Z ∈ m. It follows that if (M = G/Go, g) is a reductive space
with adapted canonical connection ∇̃, then T̃ and R̃ at the origin o deter-
mine an infinitesimal model on (m = ToM, 〈 , 〉 = go). Conversely, follow-
ing Nomizu [16] (see also [15]), we can reconstruct the transvection algebra
tr(m) = m ⊕ k by putting



[X,Y ] = −T̃ (X,Y ) + R̃(X,Y ),

[A,X] = AX,

[A,B] = AB − BA,

(2.4)

for all X,Y ∈ m and A,B ∈ k. Let G̃ be the unique connected and
simply connected Lie group with Lie algebra tr(m) and K̃ the connected
Lie subgroup of G̃ with associated Lie subalgebra k. If K̃ is closed, i.e., the
model is regular, then M̃ = G̃/K̃ is a (simply connected) manifold [15],
[16] and by identifying the tangent space ToM̃ at the origin o ∈ M̃ with m,
T̃ and R̃ can be extended to unique G̃-invariant tensor fields, the torsion
and the curvature of the canonical connection of M̃ = G̃/K̃ , respectively.
We say that M̃ = G̃/K̃ is associated to the infinitesimal model M.
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Finally, given an infinitesimal model M = (m, T̃ , R̃, 〈 , 〉), a vector V ∈
m is said to be invariant (with respect to M) if R̃(X,Y )V = 0, for all
X,Y ∈ m. We denote by Inv(M) the subspace of the Euclidean space
(m, 〈 , 〉) of all invariant vectors with respect to M. If M is regular, each
V ∈ Inv(M) is invariant with respect to the holonomy group and there
exists a unique ∇̃-parallel extension on the associated (simply connected)
homogeneous Riemannian manifold M̃ = G̃/K̃ and it is G̃-invariant (see
[6], [10] for more details).

3. Isotropic Jacobi fields

Let (M = G/Go, g) be a connected homogeneous Riemannian man-
ifold with an adapted reductive decomposition g = m ⊕ go. Denote by
IsotG(γ) the vector space of all G-isotropic Jacobi fields along a unit-speed
geodesic γ starting at the origin of M and by i(M) the set of all (complete)
Killing vector fields on M . Let F : g → i(M) be the mapping given by
F (X) = X∗, X ∈ g. Then F is a one-to-one linear map and, moreover, it
is a Lie anti-homomorphism, that is, the linear map F satisfies

[X∗, Y ∗] = −[X,Y ]∗ (3.1)

for all X,Y ∈ g. Furthermore, if G = Io(M), then F is a Lie anti-
isomorphism. Hence, it follows that the set of all isotropic Jacobi fields
along γ coincides with that of the restrictions of all Killing vector fields to
γ which vanish at o ∈ M .

From (2.2) and (3.1), we have

∇uX∗ = [X,u] (3.2)

for all u ∈ m ∼= ToM and X ∈ go. It implies that a Jacobi field V along γ

with γ′(0) = u, ‖u‖ = 1, is G-isotropic if and only if there exists an A ∈ go

such that
(V (0), V ′(0)) = (0, [A,u]). (3.3)

Then V = A∗ ◦γ and

dim IsotG(γ) = rank(ad u|go
). (3.4)
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Proposition 3.1. All G-isotropic Jacobi field along a geodesic γ is

orthogonal to γ′ everywhere.

Proof. Let V be a G-isotropic Jacobi field along γ and let A ∈
go such that V ′(0) = [A,u]. Because the inner product 〈 , 〉 on m is
Ad(Go)-invariant, it follows that adA is a skew-symmetric endomorphism
of (m, 〈 , 〉). Then V ′(0) is orthogonal to u. This gives at once the required
result. �

Next, we analize the existence of nonzero G-isotropic Jacobi fields.

Proposition 3.2. A homogeneous Riemannian manifold (M=G/Go, g)
admits a geodesic starting at the origin with some nonzero G-isotropic Ja-

cobi field if and only if dimG > dim M .

Proof. If dim G = dim M then the isotropy subgroup Go is finite
and, consequently, go is trivial. It implies that (M,g) does not possess any
nonzero G-isotropic Jacobi field.

If dim G > dim M then there exists A 
= 0 in go and, because F :
g → i(M) is one-to-one, it follows that A∗ is not identically zero and it
is a Killing vector field with A∗

o = 0. It implies the existence of a unit
tangent vector u at o such that ∇uA∗ is a nonzero vector. Let γ be the
geodesic with γ′(0) = u. Then V = A∗ ◦γ is a nonzero G-isotropic Jacobi
field along γ. �

O. Kowalski and L. Vanhecke proved in [13, Proposition 2] that
the isotropy subgroup of the group of isometries of a simply connected nat-
urally reductive space is at least one-dimensional. This yields the following
existence result.

Corollary 3.3. Any simply connected naturally reductive space ad-

mits a geodesic starting at the origin with some nonzero isotropic Jacobi

field.

Remark 3.4. In the class of all simply connected three-dimensional
unimodular Lie groups equipped with a left-invariant metric, one can find
examples of (non-naturally reductive) homogeneous Riemannian manifolds
without isotropic Jacobi fields. First, note that the Lie algebra of these
Lie groups (G, g) admit an orthonormal basis {e1, e2, e3} such that

[e2, e3] = λ1e1, [e3, e1] = λ2e2, [e1, e2] = λ3e3
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where λ1, λ2, λ3 are constants. From Proposition 3.2, (G, g) does not admit
any isotropic Jacobi field if and only if dim I(G, g) = 3 and it occurs at
least in the following cases [12]:

(i) The group E(1, 1) of the rigid motions of the three-dimensional Min-
kowski space equipped with a one-parameter family of left-invariant
metrics such that λ1 = −λ3 > 0, λ2 = 0.

(ii) The universal covering of SL(2, R) equipped with a two-parameter
family of left-invariant metrics such that λ1 > λ2 > 0, λ3 = −(λ1+λ2).

On the other hand, one can also find examples of isotropic Jacobi
fields which are not G-isotropic, for some Lie group G ⊂ I(M,g): Consider
(M,g) the n-dimensional hyperbolic space. Then, dim I(M,g)= n(n+1)/
2 > n and we shall show in Corollary 4.3 that dim Isot(γ) = n − 1, for
every geodesic γ. Moreover, (M,g) can be identified with a solvable Lie
group G of isometries (G is a semi-direct product of the multiplicative
group R

+
0 = {x ∈ R | x > 0} and the additive group R

n−1, see for example
[17]). Then (M,g) does not admit any G-isotropic Jacobi field.

Denote by M the infinitesimal model determined by the torsion and
the curvature of the adapted canonical connection ∇̃ on m ∼= ToM . Be-
cause u ∈ Inv(M) if and only if [u, k] = 0, we have

Proposition 3.5. A geodesic γ on a homogeneous Riemannian man-

ifold (M = G/Go, g) starting at the origin does not admit any nonzero

Tr(M, ∇̃)-isotropic Jacobi field if and only if γ′(0) ∈ Inv(M).

On naturally reductives spaces (M = G/Go, g), any G-invariant unit
vector field is Killing [6, Lemma 6.1] and so, each one of its integral curves
is a geodesic. Put u = Uo ∈ m = ToM . Then u is Ad(Go)-invariant and it
implies [go, u] = 0. The converse holds if Go is connected (see [9]). Hence,
we have

Proposition 3.6. Let (M = G/Go, g) be a naturally reductive space.

The integral curve through the origin of a G-invariant vector field U does

not admit any nonzero G-isotropic Jacobi field. Moreover, if Go is con-

nected then each geodesic through the origin without nonzero G-isotropic

Jacobi fields is the integral curve of a G-invariant vector field.

Note that Go is always connected if M is simply connected.
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Next, let λ1, . . . , λn−1 be the eigenvalues and {e1, . . . , en−1} the eigen-
vectors of the self-adjoint operator R̃u = R̃(u, ·)u of E = {v ∈ m | 〈u, v〉= 0}
such that λi 
= 0 if i = n − r, . . . , n − 1, and λ1 = · · · = λn−r−1 = 0, being
r = rank R̃u ≤ n − 1. Then E = E0 ⊕ E1, where E0 = Ker R̃u and E1 is
the r-dimensional subspace of m generated by en−r, . . . , en−1.

Proposition 3.7. Let (M = G/Go, g) be a homogeneous Riemannian

manifold and ∇̃ some of its adapted canonical connections. Let V be a

Jacobi field along a geodesic γ on (M,g) starting at the origin such that

V (0) = 0. If V ′(0) ∈ E1, then V is Tr(M, ∇̃)-isotropic and we have

dim IsotG(γ) ≥ dim IsotTr(M,∇̃)(γ) ≥ rank R̃u. (3.5)

Moreover, if (M = G/Go, g) is a normal homogeneous space, then the

converse holds, (3.5) becomes into an equality and

IsotG(γ) = IsotTr(M,∇̃)(γ).

Proof. Put V ′(0) =
∑n−1

i=n−r xiei and consider A ∈ k ⊂ go given by

A =
n−1∑

i=n−r

xi

λi
R̃(u, ei).

Then, A(u) = [A,u] = V ′(0) which proves that V = V (t) is Tr(M, ∇̃)-
isotropic and, consequently, G-isotropic. This also implies (3.5).

If (M = G/Go, g) is normal, then we get

〈R̃uv, v〉 =
〈
[[u, v]go , u], v

〉
=

〈
[u, v]go , [u, v]go

〉
for all v ∈ m = g⊥o . Hence, R̃uv = 0, for v ∈ E, if and only if [u, v]go = 0.
But,

[u, v]go = 0 ⇔ 0 =
〈
[u, v]go , go

〉
= −〈

v, [u, go]
〉 ⇔ v ∈ [u, go]⊥.

So, we have E1 = [u, go]. Then the proof is completed using (3.4) and (3.5).
�

Hence, a Jacobi field V is G-isotropic on a normal homogeneous space
(M = G/Go, g) if and only if it has initial condition

(V (0), V ′(0)) = (0,X), X ∈ E1.
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Remark 3.8. To finish this section, we consider a class of examples of
naturally reductive homogeneous spaces, the generalized Heisenberg groups
H(p, 1), p ≥ 1, which admit G-isotropic Jacobi fields, being G the simply
connected Lie group obtained by using the Nomizu construction for suit-
able infinitesimal models. H(p, 1) is the group of matrices of the form

a =




1 A c

0 Ip Bt

0 0 1




where Ip denotes the identity matrix of type p × p and where
A = (a1, . . . , ap) ∈ R

p, B = (b1, . . . , bp) ∈ R
p and c ∈ R. It is a connected,

simply connected nilpotent Lie group of dimension 2p+1 and the dimension
of its center is one.

The following coordinates (xi, xp+i, z), 1 ≤ i ≤ p, provide a system of
global coordinates:

xi(a) = ai, xp+i(a) = bi, z(a) = c

and a basis of left-invariant one-forms is given by

αi = dxi, αp+i = dxp+i, η = dz −
p∑

j=1

xjdxp+j.

For the dual left-invariant vector fields, we then have

Xi =
∂

∂xi
, Xp+i =

∂

∂xp+i
+ xi ∂

∂z
, Z =

∂

∂z
.

On H(p, 1) we consider the Riemannian metric g for which these vec-
tors form an orthonormal basis at each point. Denote by 〈, 〉 the inner
product on the Lie algebra h(p, 1) of H(p, 1) determined by g. Then h(p, 1)
can be expressed as the orthogonal decomposition h(p, 1) = v ⊕ z with re-
spect to 〈, 〉, where z is the one-dimensional subspace generated by Z and
v is the 2p-dimensional subspace generated by {Xi,Xp+i}, 1 ≤ i ≤ p. Let
J be the endomorphism on v given by

JXi = Xp+i, JXp+i = −Xi, i = 1, . . . , p.
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Then J2 = −idv, 〈JU, JV 〉= 〈U, V 〉 and [U, V ] = 〈JU, V 〉Z, for all U, V ∈ v.
From now on and as before, we suppose that U, V,W ∈ v and λ, µ, δ ∈ R.
For the Levi Civita connection of (H(p, 1), g) we obtain

∇(V +µZ)(U + λZ) = −1
2
(µJU + λJV + 〈JU, V 〉Z)

and the corresponding curvature tensor R is given by

R((U + λZ), (V + µZ))(W + δZ)

=
1
4
〈JV,W 〉JU − 1

4
〈JU,W 〉JV − 1

2
〈JU, V 〉JW

+
1
4
〈µU − λV,W 〉Z − 1

4
δ(µU − λV ).

(3.6)

Following [5], S = −1
2 T̃ is a homogeneous structure of type S3 on H(p, 1)

where T̃ is the (1, 2)-tensor field given by

T̃ (U + λZ, V + µZ) = µJU − λJV − 〈JU, V 〉Z.

T̃ is the torsion of the connection determined by ∇̃ = ∇ − S and, from
(3.6), the curvature tensor R̃ of ∇̃ is given by

R̃((U + λZ), (V + µZ))(W + δZ) = −〈JU, V 〉JW.

Then, M = (h(p, 1), T̃ , R̃, 〈, 〉) is a naturally reductive model for H(p, 1)
and the holonomy algebra k of ∇̃ is generated by the endomorphism ϕ

given by ϕ(U + λZ) = JU . Hence and by using (2.4), the transvection
algebra tr(h(p, 1)) = h(p, 1)⊕ k is isomorphic to a semidirect sum of h(p, 1)
and k and (H(p, 1), g) admits a naturally reductive quotient representation
G/K where G is a semidirect product H(p, 1) ×φ SO(2) [5].

Next, using [1, Section 3.7] we can directly determine all G-isotropic
Jacobi fields:

Let U + λZ be a unit vector of h(p, 1) and γ : R → H(p, 1) the
geodesic in H(p, 1) with γ(0) = e, where e denotes the identity element,
and γ′(0) = U + λZ. We have

(i) If λ = 0, then IsotG(γ) = span{tJU − 1
2t2Z}.

(ii) If U = 0, then IsotG(γ) = {0}.
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(iii) If U 
= 0, λ 
= 0, then

IsotG(γ) = span
{

(cos(|λ|t) − 1))U + sig(λ) sin(|λ|t)JU

+
1 − λ2

λ
(cos(|λ|t) − 1)Z

}
.

Moreover, it follows from [1, Section 3.8] that γ admits G-isotropic
conjugate points if and only if U 
= 0, λ 
= 0, and the G-isotropic conjugate
points are all γ(t) satisfying |λ|t ∈ 2πZ

∗.

4. Isotropic Jacobi fields on symmetric spaces

Let (M = G/Go, g) be a Riemannian globally symmetric space. Con-
sider G = Io(M,g) and σ the involutive automorphism of G given by σ :
g → sogso, where so is the geodesic symmetry at the origin o ∈ M . Then
g = m ⊕ go with go = {X ∈ g | σ∗X = X} and m = {X ∈ g | σ∗X = −X}
and M = (m, T̃ = 0, R̃ = R, 〈, 〉) is a (symmetric) infinitesimal model of M ,
where the Levi Civita connection of (M,g) is precisely the corresponding
canonical connection [8, Theorem 3.3, Ch. IV]. Moreover, the transvec-
tion group Tr(M) of this affine reductive space coincides with the group
generated by all elementary transvections sp ◦sq, for all p, q ∈ M (see [10]).

When G is semi-simple, G = Tr(M) = Io(M) and then
go = span{R(X,Y ) | X,Y ∈ ToM} [8, Theorem 4.1, Ch. V]. The de-
composition g = g1 ⊕ · · · ⊕ gr of g into its simple ideals gi, 1 ≤ i ≤ r,
allows to express the metric g at o ∈ M as restriction of an inner product
〈, 〉 = β1B1⊥ . . .⊥βrBr of g to m, where Bi is the Killing form of gi and
βi ∈ R − {0}. In particular, semi-simple symmetric spaces are normal
homogeneous spaces. For the corresponding infinitesimal models, called
semi-simple symmetric models, the following result has been proved in [6].

Lemma 4.1. Let M be a n-dimensional symmetric infinitesimal mod-

el, n ≥ 2. If it is irreducible or semi-simple, then it does not admit invariant

vectors. Moreover, if dim Inv(M) = k ≤ n, then M = Mn−k ⊕ R
k where

Mn−k is a semi-simple symmetric model and R
k is the k-dimensional flat

model.



Isotropic Jacobi fields on naturally reductive spaces 53

Hence, we have

Theorem 4.2. On an n-dimensional semi-simple symmetric space

(M,g), every unit-speed geodesic γ starting at the origin admits nonzero

isotropic Jacobi fields and

dim Isot(γ) = rankRγ′(0).

Moreover, Riemannian symmetric spaces admitting geodesics without iso-

tropic Jacobi fields are locally isometric to a Riemannian product M =
M1 × R

k, where 1 ≤ k ≤ n and M1 is an (n − k)-dimensional semi-simple

symmetric space.

Proof. From Proposition 3.5 and Lemma 4.1, there exist nonzero
isotropic Jacobi fields along γ and from Proposition 3.7, we get
dim Isot(γ) = rankRγ′(0). For the last part of the theorem, we use again
Lemma 4.1. �

The rank one symmetric spaces have been classified completely. They
are the Euclidean spheres Sm, the projective spaces KPm, where K means
either the field R of real numbers, or the field C of complex numbers, or
the non-commutative field H of quaternions and the Cayley plane CaP 2

and their non-compact duals. On an n-dimensional rank one symmetric
space, we have rankRu = n− 1, for all unit vector u. Moreover, it is well-
known that all geodesics are periodic with the same length on the compact
case. From this and taking into account that each V ∈ Isot(γ) is a normal
Jacobi field, we then obtain

Corollary 4.3. On rank one symmetric spaces, all normal Jacobi

fields vanishing at a point are isotropic. In particular, for the compact

case, they are all periodic.

All Jacobi fields on Riemannian symmetric spaces which vanish at two
points are isotropic [2]. Next, we give a simple proof of the same result
but considering only the class of the Tr(M)-isotropic Jacobi fields:

Theorem 4.4. On Riemannian symmetric spaces, every Jacobi field

vanishing at two points is Tr(M)-isotropic.
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Proof. With respect to a (parallel) frame field {E1, . . . , En} of eigen-
vectors of the Jacobi operator Rγ at each point γ(t), the Jacobi differential
equation

∇2V

dt2
+ RγV = 0

gives rise to the following system of differential equations:

V i′′ + λiV
i = 0, i = 1, . . . , n,

where λ1, . . . , λn are the (constant) eigenvalues of Rγ . If rankRγ = r, then
the solutions are given by

V (t) =
n−r∑
j=1

(Ajt + Bj)Ej(t) +
n∑

k=n−r+1

(Akαk(t) + Bkβk(t))Ek(t),

where αk(t) = cos
√

λkt, βk(t) = sin
√

λkt, if λk > 0 and αk(t) =
cosh

√−λkt, βk(t) = sinh
√−λkt, if λk < 0, k = n − r + 1, . . . , n. Be-

cause V (0) = V (to) = 0, for some to 
= 0, we have Aj = Bj = 0 for
j = 1, . . . , n − r and Ak = 0 for k = n − r + 1, . . . , n. Hence, V ′(0) ∈ E1

and from Proposition 3.7, V is Tr(M)-isotropic. �

Remark 4.5. Note that Riemannian symmetric spaces of noncompact
type are Hadamard manifolds and so, they contain no pairs of conjugate
points.

5. Isotropic Jacobi fields on naturally reductive spaces

Let (M = G/Go, g) be a naturally reductive space and ∇̃ some of its
adapted canonical connections. Let M = (m, T̃ , R̃, 〈, 〉) be the infinitesimal
model determined by (M, ∇̃). Then, from (2.3), we can also write (2.1) in
the form

〈T̃ (X,Y ), Z〉 + 〈T̃ (X,Z), Y 〉 = 0. (5.1)

Moreover, the homogeneous structure [17] S = ∇−∇̃ is given by ([9, p. 201,
Vol. II])

SXY = −1
2
T̃XY. (5.2)
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This implies that ∇ and ∇̃ have the same geodesics and, consequently,
the geodesics of (M,g) are orbits of one-parameter subgroups of G of type
exp tu where u ∈ m (see [17]). Moreover, we get

R(X,Y )Z = R̃(X,Y )Z +
1
2
T̃ (T̃ (X,Y ), Z) +

1
4
T̃ (T̃ (Z,X), Y )

+
1
4
T̃ (T̃ (Y,Z),X).

(5.3)

Given a geodesic γ(t) = (exp tu)o, u ∈ m, ‖u‖ = 1, through the origin
o at M , the Jacobi equation for ∇̃ is given by

∇̃2V

dt2
− T̃γ

∇̃V

dt
+ R̃γV = 0, (5.4)

where R̃γ = R̃(γ′, ·)γ′ and T̃γ = T̃ (γ′, ·). Note that, from (5.2) and (5.3),
we see that the corresponding equations for ∇ and for ∇̃ are identical.
Moreover, (5.3) implies the relation

Rγ = R̃γ − 1
4
T̃ 2

γ . (5.5)

Hence, R̃γ is a self-adjoint operator and from (5.1), T̃γ is skew-symmetric
with respect to g.

Let {e1, . . . , en} be an orthonormal basis of (m, 〈, 〉) ∼= (ToM,go). Since
the parallel translation with respect to ∇̃ of tangent vectors at o along γ

coincides with the differential of exptu ∈ G acting on M , it follows that
the

Ei(t) = (exp tu)∗oei, i = 1, . . . , n,

are the vector fields along γ obtained by parallel translation of ei with
respect to ∇̃. Hence, any vector field V (t) along γ can be expressed as

V (t) = (exp tu)∗oX(t)

with X(t) =
∑n

i=1 Xi(t)ei, where V (t) =
∑n

i=1 Xi(t)Ei(t). Since ∇̃T̃ =
∇̃R̃ = 0, the Jacobi equation (5.4) can be expressed as the differential
equation

X ′′ − T̃uX ′ + R̃uX = 0 (5.6)
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in the vector space m, where T̃uX = T̃ (u,X) = −[u,X]m and R̃uX =
R̃(u,X)u = [[u,X]go , u] or, equivalently, as the system of second order
linear differential equations

Xj ′′(t) +
n∑

i=1

(
− (T̃u)jiX

′i(t) + (R̃u)jiX
i(t)

)
= 0, (5.7)

1 ≤ j ≤ n, with constant coefficients (T̃u)ji and (R̃u)ji given by

(T̃u)ji = 〈T̃uei, ej〉 = g(T̃γEi, Ej), (R̃u)ji = 〈R̃uei, ej〉 = g(R̃γEi, Ej).

Definition 5.1. Given a naturally reductive model M = (m, T̃ , R̃, 〈, 〉),
a solution X = X(t) of (5.6) is called a Jacobi solution of M with respect
to u.

Each Jacobi solution X is then a curve in m obtained as X(t) =
P (t) · emt, where m is a complex number and P (t) is a complex vector-
valued polynomial (see [18] for more information).

Next, suppose that the naturally reductive space (M = G/Go, g) has
a G-invariant unit vector field U and put, as in Section 3, u = Uo ∈ m =
ToM . Then, using (2.3), R̃uv = 0, for all v ∈ m and, from (5.5), the Jacobi
operator Ru is given by

Ru = −1
4
T̃ 2

u .

Since T̃u : m → m is a skew-symmetric endomorphism, the rank of T̃u is
an even number 2k ≤ n and there exists an orthonormal basis {e1, . . . , en}
of m and real positive numbers c1, . . . , ck such that{

T̃ueα = cαek+α, T̃uek+α = −cαeα, α = 1, . . . , k

T̃ue2k+β = 0, β = 1, . . . , n − 2k.
(5.8)

Hence and taking into account that any G-invariant tensor field is parallel
with respect to the canonical connection, we have the following result.

Lemma 5.2. The rank of the Jacobi operator along the integral curves

of U is constant and is equal to an even number 2k ≤ n; its eigenvalues

are constants and its eigenspaces are ∇̃-parallel.
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In what follows we denote by −c2
i , i = 1, . . . , l, the l ≤ k different non-

vanishing eigenvalues of T̃ 2
u . Then the non-vanishing eigenvalues of Ru are

c2
i /4, i = 1, . . . , l. The corresponding eigenspaces are denoted by Vc2i

.

Theorem 5.3. Let (M = G/Go, g) be a naturally reductive homoge-

neous space and U a G-invariant unit vector field on it. Then we have:

(i) if rankRu = 0 or, equivalently, U is parallel, M is locally a product

of an (n − 1)-dimensional naturally reductive space and the integral

curves of U . Then γ(t) = (exp tu)o does not admit any conjugate

point to the origin;

(ii) if rankRu = 2k, k ≥ 1, then the conjugate points to the origin are all

γ(t) satisfying cit ∈ 2πZ
∗, for each i = 1, . . . , l, their multiplicity is

2 dimVc2i
and they are not G-isotropically conjugate.

Proof. If rankRu = 0, (5.2) implies that ∇̃U = ∇U = 0 and m = mn

decomposes into mn = mn−1 ⊕RU , where mn−1 is the (n− 1)-dimensional
naturally reductive model orthogonal to U (see [6]). From here and taking
into account that (5.6) reduces to X ′′ = 0, we get (i).

Next, we show (ii). Suppose that rankRu = rank T̃u = 2k, k ≥ 1.
Because R̃u

∼= 0, the system (5.7) may be expressed as

Y j ′(t) −
n∑

i=1

(T̃u)jiY
i(t) = 0 1 ≤ j ≤ n,

where Y i(t) = Xi′(t), i = 1, . . . , n. From (5.8), it reduces to


Y α′(t) + cαY k+α(t) = 0,

Y k+α′(t) − cαY α(t) = 0,

Y 2k+β ′ = 0.

(5.9)

Then the Jacobi solutions X such that X(0) = 0 are given by

X(t) =
k∑

α=1

(
(Aα sin cαt − Bα(1 − cos cαt))eα

+ (Aα(1 − cos cαt) + Bα sin cαt)ek+α

)
+

n−2k∑
β=1

C2k+βte2k+β,
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where Aα, Bα, C2k+β are constant. Hence, the values of t such that X(t)=0,
t 
= 0, are the solutions of the following system{

Aα sin cαt − Bα(1 − cos cαt) = 0,

Aα(1 − cos cαt) + Bα sin cαt = 0, α = 1, . . . , k,

which has non-trivial solutions if and only if

k∏
α=1

(1 − cos cαt) = 0.

So, the conjugate points γ(t) are given by the condition cit ∈ 2πZ
∗, for

all i ∈ {1, . . . , l} and, using Proposition 3.6, they are not G-isotropically
conjugate. Moreover, because the vector fields(

Aα sin cαt − Bα(1 − cos cαt)
)
Eα +

(
Aα(1 − cos cαt) + Bα sin cαt

)
Ek+α

along γ, for each α = 1, . . . , k, generate the vector space of Jacobi vector
fields Vα such that Vα(0) = Vα(2pπ/cα) = 0, for all p ∈ Z

∗, it follows that
the multiplicity of the conjugate point γ(2pπ/ci) is 2 dimVc2i

. �

Remark 5.4. In [7], the simply connected Killing-transversally sym-
metric spaces are introduced as simply connected Riemannian manifolds
equipped with a complete unit Killing vector field ξ such that all reflections
with respect to the flow lines of ξ are global isometries. These manifolds are
naturally reductive spaces and ξ is G-invariant with respect to a naturally
reductive representation (G/Go, g). Moreover, the canonical connection
of the flow Fξ is an adapted canonical connection ∇̃ of (M,g) and, if the
dual one-form of ξ with respect to g is a contact form, or equivalently, M

is irreducible [7, Theorem 5.1], it follows from Theorem 5.3 that the flow
lines on (M,g) admit pairs of conjugate points which are not G-isotropic.

Lemma 5.5. Any non-locally symmetric naturally reductive space

(M,g) of dimension n ≤ 5 admits a non-parallel Tr(M, ∇̃)-invariant unit

vector field.

Proof. Since for dimension two any Riemannian homogeneous space
obviously has constant curvature and hence is a locally symmetric space,
we shall consider the cases n = 3, 4, 5. For n = 3, M is locally isometric
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to a unimodular Lie group (SU(2), the universal covering of SL(2, R)
or the Heisenberg group) equipped with a suitable left-invariant metric
[17, Theorem 6.5] and the unit eigenvector corresponding to the single
root of the Ricci operator gives a Tr(M, ∇̃)-invariant vector field U with
rank T̃u = 2 [6, Theorem 6.12 (ii)]. If n = 4, M is locally isometric to a
Riemannian product of the form M3×R, where M3 is a three-dimensional
unimodular Lie group as before [13, Theorem 1] and the single root of
the Ricci operator on M3 determines a Tr(M, ∇̃)-invariant vector field U

with rank T̃u = 2 [6, Theorem 6.15]. Finally, we study the case n = 5. Let
M = (m, T̃ , R̃, 〈, 〉) be the infinitesimal model determined by (M, ∇̃). Then
R̃ 
= 0 and T̃ 
= 0 [14, Lemma 1.1]. If M is non-decomposable, then there
exists an invariant vector u ∈ m such that rank T̃u = 4 [14, Propositions 2.2
and 2.4] (see also [6, Theorem 6.16]). If M is decomposable, then M =
M2 ⊕ M3, where M2 is a two-dimensional symmetric model and M3 is
a three-dimensional indecomposable naturally reductive model. Then M

is locally isometric to a Riemannian product M2 × M3, and again, the
unit eigenvector corresponding to the single root of the Ricci operator
on M3 gives a Tr(M, ∇̃)-invariant vector field U with rank T̃u = 2 [6,
Theorem 6.17]. �

Now, Theorem 5.3 together with this lemma yield the following result:

Theorem 5.6. Let (M = G/Go, g) be a naturally reductive space of

dimension ≤ 5 and ∇̃ some of its adapted canonical connections. If all

Jacobi fields vanishing at two points are Tr(M, ∇̃)-isotropic, then (M,g)
is locally symmetric.

For the three-dimensional case, we prove

Lemma 5.7. Let (M = G/Go, g) be a non-locally symmetric natu-

rally reductive space of dimension three and let ∇̃ be an adapted canonical

connection. Then, we have

G = Tr(M, ∇̃) = Io(M,g).

Proof. It follows again from [17, Theorem 6.5] and from [11] that
dim I(M,g) = 4. On the other hand, in [17, p. 64] it is proved that the holo-
nomy algebra of ∇̃ is one-dimensional and consequently, dimTr(M, ∇̃) = 4.
Since Tr(M, ∇̃) ⊆ G ⊆ Io(M,g), we obtain the equality. �
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Then, we have

Theorem 5.8. All three-dimensional naturally reductive spaces with

the property that all Jacobi fields vanishing at two points are isotropic are

locally symmetric.
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