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Mann iterative algorithm for a system
of operator inclusions

By YA-PING FANG (Chengdu) and NAN-JING HUANG (Chengdu)

Abstract. In this paper, we introduce and study a new system of operator
inclusions in Hilbert spaces. We prove the existence and uniqueness of solution
for this system of operator inclusions. We also construct a new Mann iterative
algorithm for approximating the solution of this system of operator inclusions and
discuss the convergence analysis of the algorithm.

1. Introduction and preliminaries

Let H be a Hilbert space and T : H → 2H be a multivalued operator,
where 2H denotes the family of all the nonempty subsets of H. The opera-
tor inclusion problem formulated by finding u ∈ H such that 0 ∈ T (u) has
been studied extensively because of its role in modelization of unilateral
problems, nonlinear dissipative systems, variational inequalities, comple-
mentarity problems, convex optimizations, equilibrium problems, etc. For
details, we refer to [1]–[3], [8]–[18], [24]–[26], [30] and the references therein.

Recently, some new and interesting problems were considered by some
authors. They are systems of variational inequalities, systems of comple-
mentarity problems, and systems of equilibrium problems (see [4]–[6], [19],
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[20], [22], [27]–[29]). In 1999, Ansari et al. [6] studied a system of varia-
tional inequalities by the fixed point theorem. In the paper [20], Kassay

and Kolumbán introduced a system of variational inequalities and proved
an existence theorem by Ky Fan lemma. Recently, Kassay, Kolumbán

and Páles [22] introduced and studied Minty and Stampacchia varia-
tional inequality systems by Kakutani–Fan–Glicksberg fixed point theo-
rem. Very recently, Huang and Fang [19] introduced a system of order
complementarity problems and established some existence results by fixed
point theory. The study of systems of variational inequalities is interest-
ing and important because of the fact that a Nash equilibrium problem
for differentiable functions can be formulated in the form of a variational
inequality problem over product of sets (see [7]). In the paper [4], Ansari

and Khan further pointed out the equivalence of a system of variational
inequalities and a variational inequality over product of sets. On the other
hand, up to now, only a few iterative algorithms have been constructed for
approximating solution of a system of variational inequalities in Hilbert
spaces.

Motivated and inspired by the above works, in this paper, we introduce
and study a new system of operator inclusions in Hilbert spaces, which in-
cludes the systems of variational inequalities considered in [4], [6], [20],
[22] as special cases. We prove the existence and uniqueness of solution
for this system of operator inclusions. We also construct a new Mann iter-
ative algorithm for approximating the solution of this system of operator
inclusions and discuss the convergence analysis of the algorithm.

In the following, unless otherwise specified, we always suppose that H

is a Hilbert space with inner 〈· , ·〉 and norm ‖ · ‖. For our results, we need
some concepts and results.

Definition 1.1. Let T : H → H be a mapping. T is said to be strongly
monotone with constant r if there exists some constant r > 0 such that

〈Tx − Ty, x − y〉 ≥ r‖x − y‖2, ∀x, y ∈ H.

Definition 1.2. A mapping T : H → H is said to be Lipschitz contin-
uous with constant s if there exists some constant s > 0 such that

‖Tx − Ty‖ ≤ s‖x − y‖, ∀x, y ∈ H.
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Remark 1.1. If a mapping is both strongly monotone with constant r

and Lipschitz continuous with constant s, then r ≤ s.

Definition 1.3. A multi-valued mapping M : H → 2H is said to be

(1) monotone if

〈x − y, u − v〉 ≥ 0, ∀u, v ∈ H,x ∈ M(u), and y ∈ M(v);

(2) maximal monotone if M is monotone and (I +λM)(H) = H for every
(equivalently, for some)λ > 0, where I denotes the identity mappings
on H.

Definition 1.4 (See [9]). Let M : H → 2H be a maximal monotone
mapping. The resolvent operator Jλ

M : H → H is defined by

Jλ
M (x) = (I + λM)−1(x), ∀x ∈ H,

where λ > 0 is a constant.

Lemma 1.1 (See [9]). Let M : H → 2H be a maximal monotone

mapping. Then Jλ
M is nonexpensive, i.e.,

‖Jλ
M (x) − Jλ

M (y)‖ ≤ ‖x − y‖, ∀x, y ∈ H.

In what follows, unless otherwise specified, we always suppose that H1

and H2 are two real Hilbert spaces, A ⊂ H1 and B ⊂ H2 are two nonempty,
closed and convex sets. Let F : H1 × H2 → H1 and G : H1 × H2 → H2

be two mappings, M : H1 → 2H1 and N : H2 → 2H2 be two maximal
monotone mappings. The system of operator inclusions is formulated by
finding (a, b) ∈ H1 × H2 such that


0 ∈ F (a, b) + M(a);

0 ∈ G(a, b) + N(b).
(1.1)

If M(x) = ∂ϕ(x) and N(y) = ∂φ(y) for all x ∈ H1 and y ∈ H2, where
ϕ : H1 → R ∪ {+∞} and φ : H2 → R ∪ {+∞} are two proper, convex
and lower semi-continuous functionals, ∂ϕ and ∂φ denote the subdiffere-
tial operators of ϕ and φ, respectively, then problem (1.1) reduces to the
following problem: find (a, b) ∈ A × B such that


〈F (a, b), x − a〉 + ϕ(x) − ϕ(a) ≥ 0, ∀x ∈ H1,

〈G(a, b), y − b〉 + φ(y) − φ(b) ≥ 0, ∀ y ∈ H2,
(1.2)
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which is called a system of nonlinear variational inequalities.
If M(x) = ∂δA(x) and N(y) = ∂δB(y) for all x ∈ H1 and y ∈ H2,

where δA and δB denote the indicator functions of A and B, respectively,
then problem (1.1) reduces to the following problem: find (a, b) ∈ A × B

such that 

〈F (a, b), x − a〉 ≥ 0, ∀x ∈ A,

〈G(a, b), y − b〉 ≥ 0, ∀ y ∈ B,
(1.3)

which is just the problem in [20] with both F and G being single-valued.
The purpose of this paper is to prove the existence and uniqueness

of solution for problem (1.1) and construct a Mann iterative algorithm to
approximate the unique solution of problem (1.1).

2. Existence and uniqueness

For the main results, we give a characterization of solution of problem
(1.1) as follows:

Lemma 2.1. For any given (a, b) ∈ H1 × H2, (a, b) is a solution of

problem (1.1) if and only if (a, b) satisfies


a = Jλ
M [a − λF (a, b)],

b = Jβ
N [b − βG(a, b)],

where λ > 0 and β > 0 are two constants.

Proof. The conclusion directly follows from Definition 1.4. �
Theorem 2.1. Let M : H1 → 2H1 and N : H2 → 2H2 be two maximal

monotone mappings. Let F : H1 × H2 → H1 be a mapping such that for

any given (a, b) ∈ H1 × H2, F (· , b) is strongly monotone and Lipschitz

continuous with constants r1 and s1, respectively, and F (a, ·) is Lipschitz

continuous with constant τ . Let G : H1×H2 → H2 be a mapping such that

for any given (x, y) ∈ H1 ×H2, G(x, ·) is strongly monotone and Lipschitz

continuous with constant r2 and s2, and G(· , y) is Lipschitz continuous

with constant ξ. If ξ < r1 and τ < r2, then problem (1.1) admits a unique

solution.
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Proof. Choose ρ > 0 such that

ρ < min
{

2(r2 − τ)
s2
2 − τ2

,
2(r1 − ξ)
s2
1 − ξ2

}
. (2.1)

Define Tρ : H1 × H2 → H1 and Sρ : H1 × H2 → H2 by

Tρ(u, v) = Jρ
M [u − ρF (u, v)] and Sρ(u, v) = Jρ

N [v − ρG(u, v)] (2.2)

for all (u, v) ∈ H1 × H2.
For any (u1, v1), (u2, v2) ∈ H1×H2, it follows from (2.2) and Lemma 1.1

that
‖Tρ(u1, v1) − Tρ(u2, v2)‖

≤ ‖u1 − u2 − ρ(F (u1, v1) − F (u2, v2))‖
≤ ‖u1 − u2 − ρ(F (u1, v1) − F (u2, v1))‖

+ ρ‖F (u2, v1) − F (u2, v2)‖

(2.3)

and
‖Sρ(u1, v1) − Sρ(u2, v2)‖

≤ ‖v1 − v2 − ρ(G(u1, v1) − G(u2, v2))‖
≤ ‖v1 − v2 − ρ(G(u1, v1) − G(u1, v2))‖

+ ρ‖G(u1, v2) − G(u2, v2)‖.

(2.4)

By assumptions, we have

‖u1 − u2 − ρ(F (u1, v1) − F (u2, v1))‖2

= ‖u1 − u2‖2 − 2ρ〈F (u1, v1) − F (u2, v1), u1 − u2〉
+ ρ2‖F (u1, v1) − F (u2, v1)‖2

≤ (1 − 2ρr1 + ρ2s2
1)‖u1 − u2‖2, (2.5)

‖v1 − v2 − ρ(G(u1, v1) − G(u1, v2))‖2

= ‖v1 − v2‖2 − 2ρ〈G(u1, v1) − G(u1, v2), v1 − v2〉
+ ρ2‖G(u1, v1) − G(u1, v2)‖2

≤ (1 − 2ρr2 + ρ2s2
2)‖v1 − v2‖2, (2.6)

‖F (u2, v1) − F (u2, v2)‖ ≤ τ‖v1 − v2‖, (2.7)

and
‖G(u1, v2) − G(u2, v2)‖ ≤ ξ‖u1 − u2‖. (2.8)
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It follows from (2.3)–(2.8) that



‖Tρ(u1, v1) − Tρ(u2, v2)‖
≤

√
1 − 2ρr1 + ρ2s2

1 ‖u1 − u2‖ + ρτ‖v1 − v2‖,
‖Sρ(u1, v1) − Sρ(u2, v2)‖

≤
√

1 − 2ρr2 + ρ2s2
2 ‖v1 − v2‖ + ρξ‖u1 − u2‖.

(2.9)

(2.9) implies that

‖Tρ(u1, v1) − Tρ(u2, v2)‖ + ‖Sρ(u1, v1) − Sρ(u2, v2)‖
≤

(√
1 − 2ρr1 + ρ2s2

1 + ρξ
)
‖u1 − u2‖

+
(√

1 − 2ρr2 + ρ2s2
2 + ρτ

)
‖v1 − v2‖

≤ max
{√

1 − 2ρr1 + ρ2s2
1 + ρξ,

√
1 − 2ρr2 + ρ2s2

2 + ρτ
}

× (‖u1 − u2‖ + ‖v1 − v2‖).

(2.10)

Now define ‖ · ‖1 on H1 × H2 by

‖(u, v)‖1 = ‖u‖ + ‖v‖, ∀ (u, v) ∈ H1 × H2.

It is easy to see that (H1 × H2, ‖ · ‖1) is a Banach space. Define
Qρ : H1 × H2 → H1 × H2 by

Qρ(u, v) = (Tρ(u, v), Sρ(u, v)), ∀ (u, v) ∈ H1 × H2. (2.11)

Let

k = max
{√

1 − 2ρr1 + ρ2s2
1 + ρξ,

√
1 − 2ρr2 + ρ2s2

2 + ρτ
}

.

Since ξ < r1 and τ < r2, it is easy to see that 0 ≤ k < 1 from (2.1) and
Remark 1.1. It follows from (2.10) and (2.11) that

‖Qρ(u1, v1) − Qρ(u2, v2)‖1 ≤ k‖(u1, v1) − (u2, v2)‖1.

This proves that Qρ : H1×H2 → H1×H2 is a contractive mapping. Hence
there exists a unique (a, b) ∈ H1 × H2 such that

Qρ(a, b) = (a, b),
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i.e., 


a = Jρ
M [a − ρF (a, b)],

b = Jρ
N [b − ρG(a, b)].

By Lemma 2.1, (a, b) is the unique solution of problem (1.1). �

The following existence results are immediate consequences of Theo-
rem 2.1.

Theorem 2.2. Let ϕ : H1 → R ∪ {+∞} and φ : H2 → R ∪ {+∞} be

two proper convex lower semicontinuous functionals. Let F : H1 ×H2 →H1

be a mapping such that for any given (a, b) ∈ H1 × H2, F (· , b) is strongly

monotone and Lipschitz continuous with constants r1 and s1, respectively,

and F (a, ·) is Lipschitz continuous with constant τ . Let G : H1×H2 → H2

be a mapping such that for any given (x, y) ∈ H1 ×H2, G(x, ·) is strongly

monotone and Lipschitz continuous with constant r2 and s2, and G(· , y)
is Lipschitz continuous with constant ξ. If ξ < r1 and τ < r2, then prob-

lem (1.2) admits a unique solution.

Theorem 2.3. Let F : A × B → H1 be a mapping such that for any

given (a, b) ∈ A×B, F (· , b) is strongly monotone and Lipschitz continuous

with constants r1 and s1, respectively, and F (a, ·) is Lipschitz continuous

with constant τ . Let G : A×B → H2 be a mapping such that for any given

(x, y) ∈ A×B, G(x, ·) is strongly monotone and Lipschitz continuous with

constant r2 and s2, and G(· , y) is Lipschitz continuous with constant ξ. If

ξ < r1 and τ < r2, then problem (1.3) admits a unique solution.

3. Iterative algorithms and convergence

In this section, we construct a Mann iterative algorithm to approx-
imate the unique solution of problem (1.1) and discuss the convergence
analysis of the algorithm. As consequence, Mann iterative algorithms for
problems (1.2) and (1.3) are defined and the convergence of the iterative
sequences are proved, too.

Lemma 3.1. Let {cn} and {kn} be two real sequences of nonnegative

numbers satisfying the following conditions:
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(i) 0 ≤ kn < 1, n = 0, 1, 2 . . . and lim supn kn < 1;

(ii) cn+1 ≤ kncn, n = 0, 1, 2 . . . .

Then cn converges to 0 as n → ∞.

Proof. Condition (ii) implies that {cn} is decreasing and so cn has
a limit c. Suppose by contradiction that c �= 0. Choose a subsequence
{knj} ⊂ {kn} such that knj converges to lim supn kn as j → ∞. By condi-
tion (ii), cnj ≤ knjcnj and so c ≤ (lim supn kn)c, which contradicts condi-
tion (i). Hence cn converges to 0 as n → ∞. �

Theorem 3.1. Let M : H1 → 2H1 and N : H2 → 2H2 be two maximal

monotone mappings, F : H1 × H2 → H1 and G : H1 × H2 → H2 be two

mappings. Assume that all the conditions of Theorem 2.1 hold. For any

given (a0, b0) ∈ H1 × H2, define Mann iterative sequences {(an, bn)} by


an+1 = αnan + (1 − αn)Jρ
M [an − ρF (an, bn)],

bn+1 = αnbn + (1 − αn))Jρ
N [bn − ρG(an, bn)],

(3.1)

where

0 ≤ αn < 1 and lim sup
n

αn < 1. (3.2)

Then (an, bn) converges strongly to the unique solution (a, b) of prob-

lem (1.1).

Proof. By Theorem 2.1, problem (1.1) admits a unique solution
(a, b). It follows from Lemma 2.1 that


a = αna + (1 − αn)Jρ

M [a − ρF (a, b)],

b = αnb + (1 − αn)Jρ
N [b − ρG(a, b)].

(3.3)

By (3.1) and (3.3),

‖an+1 − a‖
≤ αn‖an − a‖ + (1 − αn)‖Jρ

M [an − ρF (an, bn)] − Jρ
M [a − ρF (a, b)]‖

≤ αn‖an − a‖ + (1 − αn)‖an − a − ρ(F (an, bn) − F (a, b))‖
≤ αn‖an − a‖ + (1 − αn)‖an − a − ρ(F (an, bn) − F (a, bn))‖

+ (1 − αn)ρ‖F (a, bn) − F (a, b)‖
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≤ αn‖an − a‖ + (1 − αn)
√

1 − 2ρr1 + ρ2s2
1 ‖an − a‖

+ (1 − αn)ρτ‖bn − b‖ (3.4)

and

‖bn+1 − b‖
≤αn‖bn− b‖+ (1−αn)‖Jρ

N [bn− ρG(an, bn)]− Jρ
N [b− ρG(a, b)]‖

≤ αn‖bn − b‖ + (1 − αn)‖bn − b − ρ(G(an, bn) − G(a, b))‖
≤ αn‖bn − b‖ + (1 − αn)‖bn − b − ρ(G(an, bn) − G(an, b))‖

+ (1 − αn)ρ‖G(an, b) − G(a, b)‖
≤ αn‖bn − b‖ + (1 − αn)

√
1 − 2ρr2 + ρ2s2

2 ‖bn − b‖
+ (1 − αn)ρξ‖an − a‖.

(3.5)

It follows from (3.4) and (3.5) that

‖an+1 − a‖ + ‖bn+1 − b‖
≤ αn

(‖an − a‖ + ‖bn − b‖) + (1 − αn)k
(‖an − a‖ + ‖bn − b‖)

= (k + (1 − k)αn)
(‖an − a‖ + ‖bn − b‖),

(3.6)

where 0 ≤ k < 1 is defined by

k = max
{√

1 − 2ρr1 + ρ2s2
1 + ρξ,

√
1 − 2ρr2 + ρ2s2

2 + ρτ
}

.

Let
cn = ‖an − a‖ + ‖bn − b‖ and kn = k + (1 − k)αn.

Then (3.6) can be rewritten as

cn+1 ≤ kncn, n = 0, 1, 2 . . . ,

By (3.2), we know that lim supn kn < 1. It follows from Lemma 3.1 that

‖an − a‖ + ‖bn − b‖ → 0, as n → ∞.

Therefore, (an, bn) converges strongly to the unique solution (a, b) of prob-
lem (1.1). �

By Theorem 3.1, we have the following results:
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Theorem 3.2. Let F : H1 ×H2 → H1 and G : H1 ×H2 → H2 be two

mappings, ϕ : H1 → R ∪ {+∞} and φ : H2 → R ∪ {+∞} be two proper

convex lower semicontinuous functionals. Assume that all the conditions of

Theorem 2.2 hold. For any given (a0, b0) ∈ H1×H2, define Mann iterative

sequences {(an, bn)} by




an+1 = αnan + (1 − αn)Jρ
ϕ[an − ρF (an, bn)],

bn+1 = αnbn + (1 − αn))Jρ
φ [bn − ρG(an, bn)],

where

0 ≤ αn < 1 and lim sup
n

αn < 1. (3.7)

Then (an, bn) converges strongly to the unique solution (a, b) of prob-

lem (1.2).

Theorem 3.3. Let F : A × B → H1 and G : A × B → H2 be two

mappings. Assume that all the conditions of Theorem 2.3 hold. For any

given (a0, b0) ∈ A × B, define the Mann iterative sequence {(an, bn)} by




an+1 = αnan + (1 − αn)PA[an − ρF (an, bn)],

bn+1 = αnbn + (1 − αn))PB [bn − ρG(an, bn)],

where

0 ≤ αn < 1 and lim sup
n

αn < 1

Then (an, bn) converges strongly to the unique solution (a, b) of prob-

lem (1.3).
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