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On conformally flat special quasi Einstein manifolds

By U. C. DE (Kalyani) and GOPAL CHANDRA GHOSH (Kalyani)

Abstract. The object of the present paper is to study conformally flat spe-
cial quasi Einstein manifold.

1. Introduction

The notion of quasi Einstein manifold was introduced by M. C. Chaki

and R. K. Maity [1]. A non-flat Riemannian manifold (Mn, g) (n > 2) is
defined to be a quasi Einstein manifold if its Ricci tensor S of type (0, 2)
is not identically zero and satisfies the condition

S(X,Y ) = a g(X,Y ) + bA(X)A(Y ) (1)

where a, b are scalars of which b �= 0 and A is a non-zero 1-form such that

g(X, ρ) = A(X) (2)

for all vector fields X; ρ being a unit vector field. If b = 0, then the
manifold reduces to an Einstein manifold. In such a case a, b are called
associated scalars, A is called the associated 1-form and ρ is called the
generator of the manifold. An n-dimensional manifold of this kind is de-
noted by the symbol (QE)n. Throughout this paper we assume that the
associated scalar a is constant. We call such a quasi Einstein manifold a
special quasi Einstein manifold and such a manifold is denoted by S(QE)n.
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The object of the present paper is to study conformally flat special
quasi Einstein manifold. In Section 2, it is shown that a conformally flat
S(QE)n is of quasi-constant curvature [2] and such a manifold is a sub-
projective manifold in the sense of Kagan [3]. Also it is shown that a
conformally flat S(QE)n can be expressed as a warped product I XeqM∗

where M∗ is an Einstein manifold. The notion of a special conformally
flat manifold which generalizes the notion of a subprojective manifold [4]
was introduced by Chen and Yano [5]. In Section 4 of this paper it is
shown that a conformally flat S(QE)n satisfying a(n− 2)− b > 0 is a spe-
cial conformally flat manifold. Furthermore using a theorem of Chen’s and
Yano’s paper referred to above, it is shown that a simply connected confor-
mally flat S(QE)n (n > 3) satisfying a(n− 2)− b > 0 can be isometrically
immersed in an Euclidean space En+1 as a hypersurface.

2. Conformally flat S(QE)n

In this section we assume that the manifold S(QE)n is conformally
flat. Then div C = 0 where C denotes the Weyl’s conformal curvature
tensor and ‘div’ denotes divergence.

Hence we have

(∇XS)(Y,Z) − (∇ZS)(Y,X)

=
1

2(n − 1)
[g(Y,Z) dr(X) − g(X,Y ) dr(Z)].

(2.1)

Contracting (1) we get
r = an + b. (2.2)

From (2.2) it follows that

dr(X) = db(X), since a is a constant. (2.3)

(1) implies that

(∇ZS)(X,Y ) = db(Z)A(X)A(Y )

+ b[(∇ZA)(X)A(Y ) + A(X)(∇ZA)(Y )].
(2.4)
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Substituting (2.4) in (2.1) and using (2.3) we get

dr(X)A(Z)A(Y ) + b[(∇XA)(Z)A(Y ) + A(Z)(∇XA)(Y )]

− dr(z)A(Y )A(X) − b[(∇ZA)(Y )A(X) + A(Y )(∇ZA)(X)]

=
1

2(n − 1)
[g(Y,Z)dr(X) − g(X,Y )dr(Z)].

(2.5)

Puttint Y = Z = ei in the above expression where {ei} is an orthonor-
mal basis of the tangent space at each point of the manifold and taking
summation over i, 1 ≤ i ≤ n, we get

1
2
dr(X) = dr(ρ)A(X) + b(∇ρA)(X) + b(∇eiA)(ei)A(X). (2.6)

Again putting Y = Z = ρ in (2.5) yields

b(∇ρA)(X) =
2n − 3

2(n − 1)
[dr(X) − dr(ρ)A(X)]. (2.7)

Substituting (2.7) in (2.6) we get

(n − 2)
2(n − 1)

dr(X) +
1

2(n − 1)
dr(ρ)A(X) + b(∇eiA)(ei)A(X) = 0. (2.8)

Now puttingX = ρ in (2.6) yields

b(∇eiA)(ei) = −1
2
dr(ρ). (2.9)

From (2.8) and (2.9) it follows that

dr(X) = dr(ρ)A(X). (2.10)

Putting Y = ρ in (2.5) and using (2.10) we obtain

(∇ZA)(X) − (∇XA)(Z) = 0 (2.11)

which implies that the 1-form A is closed. From (2.7) we get by virtue
of (2.10)

(∇ρA)(Z) = 0, since b �= 0. (2.12)

Now we consider the scalar function

f =
1

2(n − 1)
dr(ρ)

b
.
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We have

∇Xf =
1

2(n − 1)
dr(ρ)

b2
dr(X) +

1
2(n − 1)b

d2r(ρ,X). (2.13)

On the otherhand, (2.10) implies

d2r(Y,X) = d2r(ρ, Y )A(X) + dr(ρ)(∇XA)(Y )

from which we get

d2r(ρ, Y )A(X) = d2r(ρ,X)A(Y ). (2.14)

Putting X = ρ in (2.14) it follows that

d2(ρ, Y ) = d2r(ρ, ρ)A(Y ) = hA(Y ), where h is a scalar function.

Thus
∇Xf = µA(X) (2.15)

where µ = 1
2(n−1)b [h + dr(ρ)

b dr(ρ)], using (2.10).

Using (2.15) it is easy to show that ω(X) = 1
2(n−1)

dr(ρ)
b A(X) = fA(X)

is closed. In fact,
dω(X,Y ) = 0.

Using (2.10) and (2.11) in (2.7) we get

b[A(Z)(∇XA)(Y ) − A(X)(∇ZA)(Y )]

=
dr(ρ)

2(n − 1)
[g(Y,Z)A(X) − g(X,Y )A(Z)].

Now putting Z = ρ in the above expression yields

(∇XA)(Y ) =
1

2(n − 1)
dr(ρ)

b
[A(X)A(Y ) − g(X,Y )]. (2.16)

Thus (2.16) can be written as follows:

(∇XA)(Y ) = −fg(X,Y ) + ω(X)A(Y ) (2.17)

where ω is closed. But this means that the vector field ρ corresponding
to the 1-form A defined by g(X, ρ) = A(X) is a proper concircular vector
field ([4], [6]).

Hence we can state the following:
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Theorem 1. In a conformally flat S(QE)n (n > 3), the vector field

ρ defined by g(X, ρ) = A(X) is a proper concircular vector field.

It is known [3] that if a conformally flat manifold (Mn, g) (n > 3) ad-
mits a proper concircular vector field, then the manifold is a subprojective
manifold in the sense of Kagan. Since a conformally flat S(QE)n admits
a proper concircular vector field, namely the vector field ρ, we can state
as follows:

Theorem 2. A conformally flat S(QE)n is a subprojective manifold

in the sense of Kagan.

K. Yano [7] proved that in order that a Riemannian space admits a
concircular vector field, it is necessary and sufficient that there exists a
coordinate system with respect to which the fundamental quadratic differ-
ential form may be written in the form

ds2 = (dx1)2 + eqg∗αβdxαdxβ

where g∗αβ = g∗αβ(xγ) are the functions of xγ only (α, β, γ, δ = 2, 3, . . . , n)
and q = q(x1) �= constant is a function of x1 only. Thus if a S(QE)n is con-
formally flat i.e., if it satisfies (2.1), it is a warped product IXeqM∗, where
(M∗, g∗) is an (n−1)-dimensional Riemannian manifold. A. Gebarowski

[8] proved that warped product IXeqM∗ satisfies (2.1) if and only if M∗ is
an Einstein manifold. Thus if S(QE)n satisfies (2.1), it must be a warped
product IXeqM∗ where M∗ is an Einstein manifold.

Thus we can state the following result:

Theorem 3. A conformally flat S(QE)n (n > 3) can be expressed as

a warped product IXeqM∗ where M∗ is an Einstein manifold.

A conformally flat manifold (Mn, g) is said to be of quasi-constant
curvature ([2]) if the curvature tensor ′R of type (0, 4) is given by

′R(X,Y,Z,W ) = p[g(Y,Z)g(X,W ) − g(X,Z)g(Y,W )]

+ q[g(X,W )T (Y )T (Z) − g(X,Z)T (Y )T (W )

+ g(Y,Z)T (X)T (W ) − g(Y,W )T (X)T (Z)]

(2.18)

where p and q are differentiable functions and the vector field correspond-
ing to the 1-form T is a unit vector and ′R(X,Y,Z,W ) = g(R(X,Y )Z,W ).
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Since the manifold is conformally flat, the curvature tensor is given by

′R(X,Y,Z,W ) =
1

(n − 2)
[S(Y,Z)g(X,W ) − S(X,Z)g(Y,W )

+ S(X,W )g(Y,Z) − S(Y,W )g(X,Z)] (2.19)

+
r

(n − 1)(n − 2)
[g(X,Z)g(Y,W ) − g(Y,Z)g(X,W )].

Hence by virtue of (1) we can express (2.19) as follows:

′R(X,Y,Z,W ) =
(

2a
n − 2

+
r

(n − 1)(n − 2)

)

× [
g(Y,Z)g(X,W ) − g(X,Z)g(Y,W )

]

+
b

n − 2
[
g(X,W )A(Y )A(Z) − g(X,Z)A(Y )A(W )

+ g(Y,Z)A(X)A(W ) − g(Y,W )A(X)A(Z)
]

= p
[
g(Y,Z)g(X,W ) − g(X,Z)g(Y,W )

]
+ q

[
g(X,W )A(Y )A(Z) − g(X,Z)A(Y )A(Z) + g(Y,Z)A(X)A(W )

− g(Y,W )A(X)A(Z)
]

where p = 2a
n−2 + r

(n−1)(n−2) and q = b
n−2 .

Hence we can state the following:

Theorem 4. A conformally flat S(QE)n (n > 3) is a manifold of

quasi-constant curvature.

3. Special conformally flat S(QE)n (n > 3)

The notion of a special conformally flat manifold which generalizes
the notion of subprojective manifold was introduced by Chen and Yano

[5]. According to them a conformally flat manifold is said to be a special
conformally flat manifold if the tensor H of type (0, 2) defined by

H(X,Y ) = − 1
(n − 2)

S(X,Y ) +
r

2(n − 1)(n − 2)
g(X,Y ) (3.1)
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is expressible in the form

H(X,Y ) = −α2

2
g(X,Y ) + β(Xα)(Y α) (3.2)

where α and β are two scalars such that α is positive. In virtue of (1) we
can express (3.1) as

H(X,Y ) =
[
− a

n − 2
+

r

2(n − 1)(n − 2)

]
g(X,Y )

− b

n − 2
A(X)A(Y ).

(3.3)

We now put

α2 =
2a

n − 2
− r

(n − 1)(n − 2)
=

a(n − 2) − b

(n − 1)(n − 2)
. (3.4)

Then
2α(Xα) = − dr(ρ)

(n − 1)(n − 2)
A(X), using (2.10). (3.5)

Hence (3.3) can be expressed as

H(X,Y ) = −α2

2
g(X,Y ) + βA(X)A(Y ) (3.6)

where β = 4b(r−2an+2a)(n−1)
λ2 , λ = dr(ρ).

Suppose that a(n− 2)− b > 0, then α is not zero. Hence from (3.4) it
follows that α may be taken as positive. From (3.6) we conclude that the
manifold under consideration is a special conformally flat manifold.

It is known from a theorem of Chen’s and Yano’s paper [5] that every
simply connected special conformally flat manifold can be isometrically
immersed in a Euclidean space En+1 as a hypersurface.

We can therefore state the following:

Theorem 5. Every simply connected conformally flat S(QE)n (n>3)
satisfying a(n − 2) − b > 0 can be isometrically immersed in a Euclidean

space En+1 as a hypersurface.
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