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1. Introduction

In this paper we study the asymptotic behavior of the solutions of a broad
class of second order nonlinear differential equations, namely,

(E) (a()x’) +h(t, x, ')+ q(1)f(x) = e(t, x, x).

Equation (E) can be interpreted as the equation of the motion of a mechanical
system with one degree of freedom having kinetic energy a(f)[x]*/2 and potential
energy q(t) f f(u) du. The system is under the action of non-potential forces

0
h(t, x,x") and e(t, x, x"). The force h may typically be damping while e denotes a
perturbation.

After beginning with some continuability and boundedness results, we next
give sufficient conditions for all solutions of (E) to converge to zero. This is fol-
lowed by some results which give sufficient conditions for the convergence to zero
of certain classes of solutions of (E). In so doing, we extend some recent results of
BAKER [1], BALLIEU and PeirrFer [2], LAzer [10], Mamn and Mirzov [11], Scorr
[12, 13}, VornNICEScU [15], WILLETT and WONG [16], WONG [17, 18] and the present
authors [3—S5, 7—9, 14].

2. Continuability and boundedness

Consider the equation

(1) (a()x"Y +h(t, x, x")+q(D)f(x) = e(t, x, X"),

where a, q: [t), =)~R; f: R=R; h, e: [t,, ) XR*=R are continuous, a(t)=0
and ¢(¢t)=0. We will write equation (1) as the system

x' =y,
2 Y =[=dO)y—ht, x,y)—q0)f(x)+e(t, x, y))/a(1).
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For any function Q we let Q(f), =max {Q(¢), 0} and Q(¢)- =max {—Q(t), 0}

x

so that Q(1)=0(r), —Q(t)-. We define F(x)=ff(u) du and assume that
0

(3) xf(x) >0 for x#0;

there are nonnegative continuous functions ry., 1, ra: [#y, =)= R and a number m
(0=m=1) such that

4 le(t, x, )| = ro(D+r () FY2(x)+ro(0 |yI™;
and there exists a continuous function w: [#,, =)=+ R such that
(5) 0= w())y* = yh(t, x,y).

We will make use of the following additional assumptions on the coefficient
functions in equation (1):

©) f [(a(s)q(s))/a(s)q(s)+2w(s)/a(s)] - ds <o=;
0
™ e F(x) == as |x| =<=;
() f [ro(s)+ri(s)+ra(s)(q(s)/als))™?] [(a(s) g (s))2 <.

The proofs of our theorems are based upon Lyapunov’s direct method. For a
given solution (x(7), y(¢)) of (2), we define the Lyapunov function

V(1) = a(1)y*(1)/q(1)+2F (x(1)).
Then

&) V(1) = 2a() y () y'(0/q () +y* () (a(®)/q (1)) +2p(1) f(x(1) =
=—(a()q) »*0)/q* () =2y (1) h(t, x (1), y(1))/q(1)+ 2y (D e(t, x(1), ¥(1))/q (D).
We begin with a continuability result that extends similar results in [4] and [14].
Theorem 1. If (3)—(5) hold, then all solutions of (2) can be defined for all t=t,.
PROOF. Suppose there is a solution (x(7), y(¢#)) of (2) such that ‘lirlx_]_ [1x(0)] +

+ y(t)|]]=ee. Then from (9) we obtain

V(1) = (a®y*(0/q(1)) [(a(Dg())/a(0) g () +2w(D)/a()] - +
+2{[ro(D+r2()(g(0/a())"*] [(a(r) ()2} [a(t) y*(1)/q (1)+ 1]+
s +2r (O [F(x(0) +a(n) y*()/q(0] /(a(r) g (D).

(10) V(1) = [(a() () /a(r) g()+2w(D/a(t)] -V ()+
+[2/(a()g(0)*] [ro(D)+ ry (D) + ra(D(g (D) a(t)"*] [V (1) +1].

Integrating the last inequality and then applying Gronwall’s inequality we have
that ¥ (7) is bounded on [7,, T). Hence there exist positive constants k, and k,
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such that »*(t)=k,q(t)/a(t)=k, on [t,, T). This implies that y(t)=x(t) 1is
bounded on [#,, T) and an integration shows that x(z) is also bounded on [#,, T)
contradicting the assumption that (x(7), y(¢)) is a solution of (2) with finite es-
cape time.

The following theorem gives sufficient conditions for all solutions of (1) to be
bounded.

Theorem 2. If conditions (3)—(8) hold, then for every solution x(t) of (1) the
function V(t) has a finite limit as t—~- and, consequently, the solution x(t) and
the function a(1)(x(t))*/q(t) are bounded.

Proor. Let x(¢) be a solution of (1). It follows from (6), (8), and (10) that
V+1y =PRM0WV©D+1)

where P (1)=0 and f F(5)ds<-=. Applying Gronwall's inequality we see that

V(1) is bounded, say V(f)=k for t=t,. Notice that from (10) we also have
V()= POV @)+1) = P(O(k+1).

The last inequality implies that V'(t), =P (t)(k+1), so

f V(1) ds = (k+1) f Py(s) ds.
Since V(1) =V’(r)+V'(':)_, :
f V(1) ds =V (1) =V (1) + ftV’(t)_ ds
from which it fol]ows‘.that :
f V(1) ds =V (t,)+ f VA1), ds—V (1) = V(1) + _fV’(:)+ ds.
Thus we h:ve k )

f]V'(s)l ds = f V(1) +V'(H)-]ds = V(fo)+2ftV’(:)+ ds =

= V(t.,)+2(k+])fP1(s) ds

and so V is of bounded variation which completes the proof.

Remark. If m=1 in (4), it is easy to see that (6) and (8) could be replaced by

(6") f [(a(s)g(s))/a(s)q(s)+2w(s)/a(s)—2r,(s)/a(s)] - ds <o
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and
®) [ {r)+ri©)(a(s)g(s))2} ds <=
respectively. 2

Remark. Applications of Schwarz’s inequality reveal that condition (8) is less
restrictive than other types of conditions that can and have been imposed on the
functions r,, ry, and ry. For example, it is easy to see that if

) [ ro(s)ig () ds <o
and i

(Py) f [ro(s)/a(s)q"*(s) ds <<=
hold, then ¥

{ [ [ro@)f(ats)a@ =] ds} = { [ [2(5)/a(5) g A 5)/ g (5)] s}’ =

= {f[r(s)/a(s)quz(s)] ds}{f [76(8)/q"2 ()] ds} e

So (8) holds. Conditions such as (F,) and (P,) above arise in reconstructing ¥ from
V’ in a manner different from that used in the proof of Theorem 1. Here, for ex-
ample, we could proceed as follows:

ro(Ny/q(®) = [ro()/4" (D] y/g"*(D] = [ro(D)/g"* (D] [»*/q(D+1] =
= [ro(D/a() g *(O1V +ro(D)/q"*(1).
The authors have examined sixty-four different combinations of conditions on ry,
r; and r, resulting from various forms of constructions of this type, and all these
combinations of conditions imply condition (8). Consequently, Theorem 2

extends a number of known boundedness results such as those in [1, 4, 7, 8, 11, 14,
16] and special cases of those in [3, 5].

3. Convergence to zero

With continuability and boundedness criteria established, we are now ready
to impose additional conditions which will ensure that solutions of (1) tend to zero
as t—<o. For this purpose we establish the following result.

Proposition 3. For any given positive constants K, and ¢ there exists a positive
constant A such that A<sup {2F(x)/xf(x): x#0} and

(*) 2F(x)—Axf(x) <&
Jor all x such that |x|=K,.
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Proor. Let K;>0 and &>0 be given and let B=sup {2F(x)/xf(x): x#=0}.
If B=oo, then by a known result (see Karsai [9] or Scott [13]) there is a constant
A=0 such that (*) holds and the proof is complete for this case. If B<oo, first
observe that there exists K,>0 such that | f(x)|<K, for all x satisfying [x]|<K;.
Choose & =0 such that & <min {B, ¢/2K,K,}. Then for x=0 we have

2F(x)/xf(x) =< (B—&,)+2¢;,

2F(x)—(B—2)xf(x) < 2e,xf(x) <&

for |x|<K; and we see that (%) holds with A=B—¢,<B. Moreover, if x=0,
then clearly (*) holds with A=B—g, since F(0)=/(0)=0. This completes the
proof of the proposition.

50

Theorem 4. Suppose that in addition to (3)—(8) there exist nonnegative con-
tinuous functions wy, «: [ty, ==)—~R such that for all bounded x

(11) [h(t, x, Y)| = |y|wi (D),
(12) f(:)=fa(s)ds-—oo as t-—oo,
X

there is a number ¢ (0<o=1) such that 0<A<sup {2F(x)/xf(x): x#=0} implies

(13) tim sup (1/1(1) [ {[(a(s)g(s))/a(s)q(s)+2w(s)/a(s)] 1(s) (1 + a(s)} - ds =

=Il(A) <l—a,
(14) [ (a6/a@Y| (@) a@e = o(10), 1o,
15) " a)@@gOP = o)), e,
and
(16) [ @) (@) a@p] ds = o(I@), 1 ~==.

Then every solution x(t) of (1) satisfies x(t)—~0 as t—-co,

Proor. Let x(¢) be a solution of (1) and let ¥ (¢) be defined as before. Then
from Theorem 2 we have that x(¢) is bounded and V(7) has a finite limit as 7o,
Suppose that V(t)—~2,=0 as t—~<. If ¢ is any given positive number, then by
Proposition 3 there exists a constant A4 such that 0<A<sup {2F (x)/xf(x): x#0} and

(17) 2F(x(0))—Ax() f(x()) < e

for 1=t,. By observing that (a()x()y())' =x()(a(?)y(1)) +a(t)y*(t), V() can
be rewritten in the form

V(1) = (A+1)a()y*(1)/q(1)—A(a()x () y(1)) /q(1)— Ax (1) f (x(1)) +
+2F (x(0)+ Ax(0) [e(t, x(0), y(6))—h(t, x(1), y(1))] /9 (1)
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Let K and L denote positive constants satisfying |x(#)|=K and V(f)=L*; then
[y(O)](a(t)/g(t))'*=V12(t)=L. Therefore, from (17) we have

(18) V() = (A+1)a)y*(0)/q()—A(a()x(D)y(1)/q(D)+e+ AKry(1)/q(1)+
+ALKry(1)/q(0)+ AL™Kry(1)(q(0/a(t))"*/q () + AKLw, (1) [(a(t) g (1)},

Now define H(1)=V(t)I(t); then H'(t)=V'()I(1)+V (t)x(t). From (9), (18),
and the fact that «(/)=0 we have

H'(1) = (1+ A) a() y* (D a(0)/q () — Ax () (a()x () y (D)) [q (1) +
+AKLw, (Na()/(a(1) q(1)"*+ea(1)
+ KA (1) [ro(8)+ Lry () + L™ ry (1) (q(0)/a(0))"'*] [ q (1) —
—[(a(q(®))/a()q(®)+2w(D)/a(n)][a(?) y*() 1(1)/q(D)] +
+2L[ro() +Lry (1) + L™ ry (1) (q(0)/a(0))™*] 1(1)/(a(1) g (1) 2.

Choose T>1, such that if =7, then [[r(s)/(a(s)q(s))"*]ds<e for i=0,1,
r 3

|V (t)— A, <e, and f{r,(.s')(q(s)/a(s))”'“/(a(s)q(s)]‘”} ds—<e. Then integrating H’
T

we have

H(1) = H(T)—A [ [2(s)(a(s)x()y(s))/q(s)] ds+e [ a(s)ds+
8 T

+AKL [ [wi(s)2(s)/(a(s)g(s))"*] ds
T
+AK [ {a(s)[ro(s)+Lry(s)+ L™ ro(s) (g (s)/a(s))™*] [q(s)} ds+
T
+2L f {[ro(s)-’r Lrl(s)-+-L"'rg(s)(q(s)/a(s))”*]I(s)/(a(s)q(s))‘”} ds+
T

+ [ {16 [(a(s)g(s))/a()g(s)+2w(s)/a(s)] —(1+ A) a(s)} -V (s) ds.
T

Integrating the first integral in the last inequality by parts and noticing that I(s)=
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= fcc(u) du=I(T)+ f o(s) ds, we obtain from the choice of T that
t T
(19) H(1) = C,—Ax()a() x(Dy(1)/g()+ A4 [ [(2()/q()) a(s) x()y(s)] ds+
X

+AKL f [wi(s)a(s)/(a(s)q())'?]) ds+Q(1) (4 +e)+
T

+AK f {2() [ro(s) + Lry () + L™ ro(s)(q(s)/a(s))™*] /g (5)} ds +
T

T

+8 f'uc(s)ds+(1+L+L"’)sfaz(s)ds
T T

for some positive constant C, and

L3

Q) = [ {1(9)[(a(s)q(s))/als)g(s)+2w(s)/a(s)] —(1+ A)a(s)} - ds.

T
Using the fact that |x(¢)|=K and (a(t)/q(1))"2|y(#)|=L we obtain the estimate

H(1) = C,+ AKLx(1)(a(1)/q(0)"*+ AKL [ : [(x(s)/q(s))|(a(s)q ()2 ds+
T

+AKL [ [wi(s)a(s)/(a(s) g(s)*] ds+Q(1) 7y +8) +
T

+[AK(1+ L+ L™)e sup {a(s)((a(s)/q(s))”z: T=s= t} +

+[14+2L(1+L+L"))e f a(s) ds.

&
Dividing the last inequality by /(¢) and letting #—~< we have from (12)—(16) that
A<[142L(1+L+LM)e+(1—0)(A,+e)+¢

which yields a contradiction for ¢=0 sufficiently small. The contradiction is derived
from the assumption that 4,=0, so theorem is proved.

Remark. Theorem 4 improves Theorem 1 in [9] even in the case h=0. Spe-
cifically, condition (13) is weaker than the corresponding one in [9]: for every A=0

(0) [ [(@(9)q(s))/a(s)q(s)—(+ 1) a(s)/I(s)] - ds <.

To verify this, we first prove that (20) implies (13). Suppose that (20) holds and
for a given £=0 let T be so large that

J [(a()q())/a(s)q(s)—(A+ D ea(s)/1(s)] - ds < e.
T
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Then
lim sup[1/7(1)] [ [(a(s)q()) I(s)/a(s)q(s)—(A+1)a(s)] - ds <

= [ (@) g(5)Y /a(9) g =+ Da(s)I(s)] - < &3
:

therefore, (13) holds.
On the other hand, we can show an equation for which condition (20) is not
satisfied, but (13) is. Consider the equation

21) x"+q()x =0, t=1=0
where the coefficient ¢ is defined as follows:
¢ if nst=n+2/3
9() = {e=<"+1)f= if n+23<t<n+l1
for n=0,1,2,.... Let a(t)=1/(1+1) so that I(¢)=In (1+1¢).

Notice that
1—(142)/(t+DIn(t+1), n<t<n+2/3

7(0/g(O)=1+D a1 = {—(1 D+ DIn(t+1),  n+2B=t=n+l,

SO
e IF1

[ 146/~ +Da(I(D)-ds=(1+2) Z [ [/s+Din(s+1)]ds =
0

=0i+3/3
i+l

g(1+z)l=2:[1/m(s+2)] [ [(Us+1)]ds =

i+2/3
= (142) Z [1/In(i+2)]In[(i+2)/(i+5/3)].
i=1
It is easy to see by L’'Hospital’s rule that (i+2) In (i+2)/[(i+5/3]+1/3 as i-co,
Thus there exist N>1 and 0=C<=1/3 such that

[1/In(i+2))In[(i+2)/(i+5/3)] = C/(i+2)In(i+2), i= N.
Hence,

f [¢°(s)/q(s)—(1 +A)a(s)/I(s)]- ds = (1 +J.)C‘=2:':[l/(f+2)ln(f+ 2)].

Since the series on the right diverges to + <=, we see that (20) does not hold. To
see that (13) holds, let

K@) = [1/10)] [ [¢'(9)1(s)/q(s)—(1+ D) a(s)] - ds;

then
n i42/3 i+1

Kmn+)=3 [ [In(s+l)—(l+).)/(s+l)]_ds+ZN' [ [G+2)s+D)]ds.
|==l'li

i=0;493
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Notice that

[ +D/s+D1ds = [A+DE+53)] [ ds = (1+1)3(i+5/3),
i+2/3 i+2/3
SO
n i+2/3

In+1)K(n+1) = Zf [n(s+1)—(14+2)/(s+ 1)]- ds+[(1+2)/3] 2(:+5/3)—

Thus we have
K(n+1)=[1/In(n+2)] X
n i+2[3

x{‘Z [ n(s+1D—1+2)/(s+ 1)) ds+[(1+2)/3] 2(:+5/3) 1
=0 |
Now let k be a positive integer such that In(s+1)—(1+2)/(s+1)=0 got s=k.
Then
K(n+1) =[1/In(n+2)] X
g i+2/3

X{Z [ [n(+D-1+/s+1)]- ds+[(1+z)/31n(n+2)]z(;+5/3) 1} =

g i+2/3

-'[]/ln(n+2)]{2f [In(s+1)—(1+2)/(s+ 1] - ds+[(2+1)/3In(n+2)] 2(1/:)

Now

i+2/
umiup[l/ln(wz)]{j f [In(s+1)—(1+2)/(s+1)]- ds} =0,

hence
limiup K(n+1) = lirullﬂlp [(A+1)/3In(n+2)] :_;,'1 (1/i) = (A+1)/3.

For equation (21) we have sup {2F(x)/xf(x): x#0}=1. If O<A<1 then
(14+4)/3<1, so condition (13) is satisfied for equation (21).

Example. Consider the motion of a pendulum whose length at time 7 is given
by I(t) where /’(t1)=0. Assume that viscous fiiction acts on the pendulum in such
a way that the damping force is proportional to its velocity. Let the position of
the pendulum in the plane be described by its length /(t) and the angle x between
the axis directed vertically downward and the pendulum. Then the kinetic energy
and the resultant of the forces are

T() = (m/2) (PO X' (OP+[I'(1)]*)
Q(1) = —mgl(1) sin x(£)— h(1)x'(1),

where m is the mass of the pendulum material, g denotes the gravitational constant
and h(t)=0 is the frictional coefficient at the moment . The Lagrange’s equation
of the second kind for this motion is as follows:

and

(22) (mPO)x’) +h()x’+mgl(f)sinx =0, —na=x=<m.
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Consider the Lyapunov function
V(1) = 1()[x"()]*/g+2(1—cos x).

By (9) we have V'(1)=0. Therefore, if the initial values x(0), x"(0) are small encugh,
then |x(7)|<n/2 for all 1=0, so condition (7) is not needed here.

It is well-known [2] that a large damping term can destroy the asymptotic
stability with respect to x. We will now consider the following situation. Let the
length of the arm change by the law /(#)=(z+1)*, where 0=k<2 is fixed. Under
how large a damping will x(¢) stili tend to 0 as #—eo?

Choose a(t)=(t+1)" (—1<=r=2); then I(t)=[(t+1)"*'—1]/(r+1) > as {—+e=.
Simple computations show that conditions (14) and (15) are satisfied for all r. To
check condition (13) consider the expression

[3I(D)/1(1)+2h(D)/mP(D] I(1)— (1 + 1) a(t) =
= [Bk/(r+1)—(1+A)](t+ 1) =3k/(r+1)(1+1).
Clearly we can choose r close enough to f,—1 so that
3k/(r+1)—1—sup {2(1 —cos x)/x sinx: 0 < [x| = n/2} = 0
holds, so (13) holds.
If f [A(s)/(s+1)**3-"] ds<e=; then (16) is satisfied, while if this integral di-

0
verges, then by L’Hospital’s rule we have
t
tim (1)~ [ [A()/(s+1)*~"]ds = lim h(1)(t-+1)~%",
0

so we have proved the following result.

Proposition. Suppose that the length of the arm in (22) changes by the law I(t)=
=(t+1)* (0=k=<2). If the frictional coefficient h(t) satisfies the relation h(t)=
=o((t+1)*?) as t—oo, then for every motion with sufficiently small initial values
x(0), x'(0) the angle of deviation x(t) tends to 0 as t— <.

If the functions « and ¢ belong to C?*[t,, =) then the proof of Theorem 4 can
be modified to obtain:

Theorem 5. Suppose that all the assumptions of Theorem 4 are satisfied except
(14). If, in addition

(14°) a(®)|(x(0/g(®))] = <(I(1), t—>ee,
and
(147) f [(a(®)(@()/q())]- = e(I(D)), t—>ee,

then every solution x(t) of (1) satisfies x(f)—~0 as t—co.

Proor. Let x(¢) be a solution of (1). Proceed exactly as in the proof of Theo-
rem 4 until inequality (19) is obtained. Then integrate the first integral in the right
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number of (19) by parts to obtain

(23) A [ (x()/q(s)) a(s)x(s) y(s) ds = Ca+(A/2)(x()/g () a(t) x*(1)—
T
—(4f2) [ [a()(x(s)/q(s))] x*(s) ds
T

where C, is a constant. The remainder of the proof is as before using (14”) and (14”)
in place of (14).

Remark. Theorem 5 extends a similar result obtained in [9] and Theorems 4
and 5 generalize similar results of BALLIEU and PEIFFER [2], LAzER [10], and ScotT
[12, 13]. Theorem 4 also improves Theorem 8 in [4] and Theorem 1.1 in [16].

In what follows it will be convenient to classify the solutions of (1) as follows.
A solution x(t) of (1) will be called nonoscillatory if there exists #,=t, such that
x(t)#0 for t=t: the solution will be called oscillatory if for any t,=1, there
exist 7, and 1, satisfying f,<f,<t3 and x(#,)x(#5)<0; and it will be called a Z-type
solution if it has arbitrarily large zeros but is eventually nonnegative or nonpositive.
With this classification we have the following two corollaries.

Corollary 6. If all the conditions of either Theorem 4 or Theorem 5 hold with
condition (15) replaced by

(15) [ {2 [ro(s)+ n)+ ra(s) (a6 a(s))"=] g (s)} ds <o,

then every not eventually monotonic solution x(t) of (1) satisfies x(t)—~0 as t—-oo.

Corollary 7. If (15”) holds and all other hypotheses of Theorem 5 hold except
(14") and (15), then every oscillatory or Z-type solution x(t) of (1) satisfies x(t)—0
as t--oo,

The proofs of both corollaries consist, in view of the fact that V(r) has
a finite limit as T—oo, of showing that there exists a sequence {f,} for which
t,~= and V(t,)—~0 at n—e. For Corollary6, choose {t,} so that x’(z,)=0;
then —Ax(t,)a(r,)x(1,)y(1,)/q(t,)=0 in (19) for each n and (15) is not needed. For
Corollary 7, choose {t,} so that x(#,)=0; then in (23) (4/2)(x(2,)/q(1,)) a(t) x*(t,) =0
for all n and (14°) is not needed.

Remark. Theorem 7 in [4], Theorem 3.1 in [8], Theorem 4 in [14], and the
Theorem in [15] all obtain the conclusion of Corollary 7 for special cases of (1).
Corollary 7 improves these results not only in the sense that it applies to a more
general equation, but also in that all of the other results require (a(7)g(¢))’=0 for
all t=t, and conditions that imply (13). Corollary 7 also extends similar results
obtained by Wong in [17, 18] for special cases of (1).

It is suspected from the results on special cases of (1) that the convergence to
zero of the nonoscillatory solutions of (1) can be obtained with much less restrictive
conditions than (12)—(16). For example, in [8] it was proved that all the nonoscil-
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latory solutions of equation (1) with h=e=0 tend to zero as 7—< if and only if
oo T
(24) [ (a@) [ g(s)dsdt =<=.
0 0

This result can be extended to equation (1) as follows.
Theorem 8. Suppose that (3)—(8) and (11) hold. If

(25) [ (1/a(s)) [ [ro(w)+ry(u)+ ro(w) (g (w)/a())™’* +

+wy (u)(q(w)/a@)* —Kyq ()] du ds+ [ [1/a(s)] ds = —<=

for any positive constant Ky, then every nonoscillatory or Z-type solution x(t) of (1)
satisfies x(1)—~0 as t—<o.

Proor. Let x(f) be a nonoscillatory or Z-type solution of (1), say x(#)=0
for t=t,=1t,; then as in the proof of Theorem 4 there is a constant L=0 such
that V(1)=L* We first show that lil;n inf x(#)=0.

If this is not the case, then since x(¢) is bounded from above and from below
there exist #,=# and 6=>0 such that f(x(1))=6=>0 for t=t,. Now from (1),
(4), and (11)

(a@y @) +q@) f(x(1)) = ro()+r () FY2(x(1) +ro (D) |y (DI +wy (1) |y (D),
50

(26) (a()y(0) = ro()+Lry()+L™ry()(q(0)/a(D)™*+ Lwy ()(q(1)/a()}'*—dq(1)
and integrating twice we obtain

x() = x(t) +a(t) () [ [1/a(s))ds+

+ [ [1/a(s)] [ [ro(u)+Lry(u)+ L™ ro(u)(q(w)/a(u))™* +

+ Lwy (u)(gq(u)/a(u))/*—6q(u)] du ds.

Hence, according to (25), x(f)—~—< as t—- which is a contradiction.

If x(7) is monotonic on an interval [T, =), then the proof is complete. If x(r)
is not monotonic on any interval [7, =), then let {t,} be a sequence of minima
of x(t) such that 7, as n-oe.

Since x’(tr,)=0 (n=1,2,...) and x(z,)—=0 as n—o-o, we have

lim V' (z,) = lim F(x(z,) =0.
On the other hand, by Theorem 2, ¥ (¢) has a finite limit as #—<<. Therefore, V()0
and, consequently, x(1)—~0 as f-eo,

Remark. Notice that condition (25) implies condition (24) which, as noted
above, is a necessary and sufficient condition for the conclusion of Theorem 8
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when h=e=0. Condition (24) is also necessary in Theorem 8. Namely, it can be
proved (see [4], Theorem 6) that if all the conditions of Theorem 8 except (25) hold,
oo t

J Wa@)] [ q(s)dsdt<<, and

S W/a@) [ [r()+r()+7a() (g ()/ a2+ wy(s) (g (s)/a(s)) 2] ds dit <e,

o

then (1) has a nonoscillatory solution x(r) with liminf x(7)=0.
t—~oo
Another variant of Theorem 8 is as follows.

Theorem 9. Let (3)—(8) and (11) be satisfied. If

@7 [ 146 (a(s)/g ) ds <o

(28) f [sq(s)/a(s)] ds ==,

(29) [ [(ro($)+ 1 () +ro(s)(q(s)/a(s))"2)/g(s)] ds <=,
and b

(30) J /(a9 g()2) ds = o), 1 =<,

then every nonoscillatory or Z-type solution x(t) of (1) satisfies x(t)—~0 as t—-=.
ProoOF. Let x(t) be a nonoscillatory or Z-type solution of (1). We first show
that liEn inf [x(#)|=0. Suppose that x(#)=0 for r=t,=¢, and that lil'ninfx(t):-o.

Let t,, L, and é be as in the proof of Theorem 8 and proceed as in that proof
until (26) is obtained. Dividing (26) by ¢(), integrating, and then using (27) and
(29) we obtain

a()y(0/q(0) = a(tx) y(1)/q(t)+L [ 1¢'(s)| (a(s)/g*(s))/2 ds+
+ [ [(ro(s)+Lry(s)+ L ro(s)(q(s)/a(s))"?)/q(s)] ds+
+L f [wi(s)/(a(s) g(s))"*] ds—d(t—1,) =

= M,—dt+L [ [wi(s)/(a(s) g(s))"?] ds
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for some positive constant M,. Multiplying the last inequality by ¢(¢)/a(t) and
then integrating we have

x(f) = x(t,)+‘ & r{[les—en(us) ' f’ wi(w)/(a(u) g (w))* du] sq(s)/a(s)} ds.
From (30) there ex'ists t3=t, such that
M,[s—d+(L/s) f' wy (u)/(a() g ()2 du < —§/2
for s=t,. Hence there exists a constant M,=0 such that
*() < My—(2), i [sg()as) ds

and (28) implies that x(r)<0 for all sufficiently large f, which is a contradiction.
The remainder of the proof is the same as the proof of Theorem 8.

Remark. Theorem 8 includes Theorem 5 in [4] and it generalizes Theorem 2.2
in [8]. Theorems 8 and 9 extend Theorem 3 in [14].
Finally, consider the equation

(31) (x’/21)' +2tx = 2/ +12/1°
having the general solution
x(f) = Asin *+ B cos *+ 1/1*.

We can conclude from either Theorem 8 or Theorem 9 that the nonoscillatory and
Z-type solutions of (31) tend to zero as ¢—-<. However, none of Theorems 4—5
nor Corollaries 6—7 apply to this example since (a(1)g(¢))’=0 and w(z)=0 which
prevents (13) from being satisfied. Notice that none of the oscillatory solutions of
(31) converge to zero as t—-<=. In general it can be easily shown that in the case
h=0 under conditions (3)—(8) all the oscillatory solutions of equation (1) tend to
zero as t—o<o only if

f [[(a()q(s))|/als)q(s)] ds =<=.
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